• Title/Summary/Keyword: $CO_{2e}$ Emission

Search Result 243, Processing Time 0.031 seconds

Optical Properties of $CdAl_2S_4 : Co_{2+}$ Single Crystal ($CdAl_2S_4 : Co_{2+}$ 단결정의 광학적 특성)

  • Kim, Hyung-Gon;Kim, Nam-Oh;Son, Kyeong-Choon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.7
    • /
    • pp.382-387
    • /
    • 2000
  • The $CdAl_2S_4 and CdAl_2S_4 : Co^{2+}$ single crystals were grown by the chemical transport reaction method using iodine as a transport agent. The $CdAl_2S_4 and CdAl_2S_4 : Co^{2+}$single crystals were crystallized into a defect chalcopyrite structure. The optical energy gap of the $CdAl_2S_4 and CdAl_2S_4 : Co^{2+}$ single crystals was found to be 3.377 eV and 2.924 eV, respectively, at 300 K. Blue emission with peaks in 456nm~466nm at 280K was observed in the $CdAl_2S_4$ single crystal. Optical absorption and emission peaks due to impurities in the $CdAl_2S_4 Co^{2+}$ single crystal were observed and described as originating from the electron transition between energy levels of the $Co^{2+} ion sited at the Td symmetry point.

  • PDF

Estimation of Carbon Emissions and Energy Self-Sufficiency in Sewage Treatment plant's Improvement by using Life Cycle Management Tool (LCM 기법을 이용한 하수처리장 개선에 따른 탄소배출량 및 에너지 자립율 평가)

  • Moon, Jin-Young;Park, Ji-Hyoung;Hwang, Yong-Woo;Park, Kwang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.223-232
    • /
    • 2013
  • In this study, carbon emissions and energy consumption were evaluated to establish a design strategy which has low energy consumption and carbon emission production, by using life cycle energy (LCE) and life cycle $CO_2(LCCO_2)$ calculation methods in life cycle management(LCM) tools. After improvement design projects, the energy consumption and $CO_2$ emission were calculated and compared in three sewage treatment plants (STPs), which are A STP, B STP, and C STP. The reduction of carbon emissions was 28,020.1 ton $CO_{2-}e/yr$, 37,399.6 ton $CO_{2-}e/yr$ and 8,788.3 ton $CO_{2-}e/yr$, respectively. Production of energy was 792 TOE/yr, 1,235 TOE/yr and 1,023 TOE/yr, respectively. As a result, the estimation of energy and energy self-sufficiency was 5.1 %, 14.5 % and 23.5 %, respectively. The result of this study shows the LCM can be contributed to establish strategy for energy and carbon emission reduction in sewage treatment plants.

Development of a Model and Methodology for the Analysis of the $CO_2$ Emissions Reduction Effect through the Introduction of the G2B Systems in e-government : ECRE Approach (전자정부 G2B 시스템 도입에 따른 탄소저감효과 분석을 위한 모델 및 방법론 개발)

  • Lim, Gyoo-Gun;Lee, Dae-Chul;Lim, Mi-Hwa;Moon, Jong-In
    • The Journal of Society for e-Business Studies
    • /
    • v.15 no.3
    • /
    • pp.163-181
    • /
    • 2010
  • As a part of efforts to reduce the global emissions of greenhouse gases, the Kyoto Protocol was signed by major developed countries ("Annex I" countries). According to the Kyoto protocol, the Emission Trading Scheme that derives a trading market of the $CO_2$ emission rights is appeared. It causes that business institutions give lots of efforts to reduce $CO_2$ by using new environmentally sound technologies or increasing efficiency in production. On the while there have been several studies trying to develop a methodology to measure the effect of $CO_2$ reduction and its monetary value. In this research we suggest ECRE (Evaluation of $CO_2$ Reduction in E-transformation) model which can measure the $CO_2$ reduction effect through the introduction of G2B system. ECRC model was developed based on the IPCC methodology. ECRC model measures the two major effects of the $CO_2$ reduction which are '$CO_2$ reduction effect from transportation' and '$CO_2$ reduction effect from the decrease of paper use'. In this paper, we calculate the economic effect of $CO_2$ reduction with the case of the G2B system in Korea. This research suggests a basic methodology to measure the $CO_2$ reduction performance for the e-transformed institution.

Comparison of GHG Emission with Activity Data in Korean Railroad Sector (국내 철도부문의 활동도 자료에 따른 온실가스 배출량 비교 연구)

  • Lee, Jae-Young;Rhee, Young-Ho;Kim, Yong-Ki;Jung, Woo-Sung;Kim, Hee-Man
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.861-864
    • /
    • 2011
  • Since national GHG reduction target by 2020 has been presented in Korea, the role of railroad has been reinforced within transport system due to the allocation of reduction target into sector. So, it is necessary to manage activity data systematically for the calculation of GHG emission in railroad. Now, the activity data of diesel consumption for NIR(National Inventory Report) are provided from oil supply and demand statistics. On the other hands, the activity data collected directly from railroad operating companies are used for GHG & Energy Target Management Act. This study aimed to assess the GHG emissions using two kinds of activity data related to the diesel consumption of railroad in 2009 and 2010. As a result, GHG emissions based on oil supply and demand statistics was 636 thousands ton $CO_{2e}$, but the activity data collected from railroad operating companies showed 649 thousands ton $CO_{2e}$ in 2009. Also, the gap of $CO_{2e}$ emission was increased in 2010. These trends were caused because oil supply and demand statistics included total diesel sales volume during 1 year and the activity data collected from railroad operating companies were the amount of diesel consumption only at railcar operation and maintenance step. In conclusion, it is important to develop the management and verification system of activity data with high reliability to substitute oil supply and demand statistics in railroad sector.

  • PDF

Estimation of Carbon Emission and Application of LCA (Life Cycle Assessment) from Potato (Solanum tuberosum L.) Production System (감자의 생산과정에서 발생하는 탄소배출량 산정과 전과정평가의 적용)

  • So, Kyu-Ho;Ryu, Jong-Hee;Shim, Kyo-Moon;Lee, Gil-Zae;Roh, Kee-An;Lee, Deog-Bae;Park, Jung-Ah
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.728-733
    • /
    • 2010
  • This study was carried out to estimate carbon emission using LCA and to establish LCI database of potato production system. Potato production system was categorized into the fall season potato and the spring season potato according to potato cropping type. The results of collecting data for establishing LCI D/B showed that input of fertilizer for fall season potato production was more than that for spring season potato production. Input of pesticide for spring season potato production was much more than that for fall season potato production. The value of field direct emission ($CO_2$, $CH_4$, $N_2O$) were 2.17E-02 kg $kg^{-1}$ for spring season potato and 2.47E-02 kg $kg^{-1}$ for fall season potato, respectively. The result of LCI analysis focussed on the greenhouse gas (GHG), it was observed that carbon footprint values were 8.38E-01 kg $CO_2$-eq. $kg^{-1}$ for spring season potato and 8.10E-01 kg $CO_2$-eq. $kg^{-1}$ for fall season potato; especially for 90% and 6% of $CO_2$ emission from fertilizer and potato production, respectively. $N_2O$ was emitted from the process of N fertilizer production (76%) and potato production (23%). It was observed that characterization of values of GWP were 8.38E-01 kg $CO_2$-eq. $kg^{-1}$ for spring season potato and 8.10E-01 kg $CO_2$-eq. $kg^{-1}$ for fall season potato.

Soil Emission Measurements of N2O, CH4 and CO2 from Intensively Managed Upland Cabbage Field (배추 밭에서의 N2O, CH4, CO2 토양배출량 측정 및 특성 연구: 주요온실가스 배출량 측정 및 지표생태변화에 따른 특성 연구)

  • Kim, Deug-Soo;Na, Un-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.3
    • /
    • pp.313-325
    • /
    • 2011
  • From October 2009 to June 2010, major greenhouse gases (GHG: $N_2O$, $CH_4$, $CO_2$) soil emission were measured from upland cabbage field at Kunsan ($35^{\circ}$56'23"N, $126^{\circ}$43'14"E), Korea by using closed static chamber method. The measurements were conducted mostly from 10:00 to 18:00LST during field experiment days (total 28 days). After analyzing GHG concentrations inside of flux chamber by using a GC equipped with a methanizer (Varian CP3800), the GHG fluxes were calculated from a linear regression of the changes in the concentrations with time. Soil parameters (e.g. soil moisture, temperature, pH, organic C, soil N) were also measured at the sampling site. The average soil pH and soil moisture were ~pH $5.42{\pm}0.03$ and $70.0{\pm}1.8$ %WFPS (water filled pore space), respectively. The ranges of GHG flux during the experimental period were $0.08\sim8.40\;mg/m^2{\cdot}hr$ for $N_2O$, $-92.96\sim139.38mg/m^2{\cdot}hr$ for $CO_2$, and $-0.09\sim0.05mg/m^2{\cdot}hr$ for $CH_4$, respectively. It revealed that monthly means of $CO_2$ and $CH_4$ flux during October (fall) were positive and significantly higher than those (negative value) during January (winter) when subsoil have low temperature and relatively high moisture due to snow during the winter measurement period. Soil mean temperature and moisture during these months were $17.5{\pm}1.2^{\circ}C$, $45.7{\pm}8.2$%WFPS for October; and $1.4{\pm}1.3^{\circ}C$, $89.9{\pm}8.8$ %WFPS for January. It may indicate that soil temperature and moisture have significant role in determining whether the $CO_2$ and $CH_4$ emission or uptake take place. Low temperature and high moisture above a certain optimum level during winter could weaken microbial activity and the gas diffusion in soil matrix, and then make soil GHG emission to the atmosphere decrease. Other soil parameters were also discussed with respect to GHG emissions. Both positive and negative gas fluxes in $CH_4$ and $CO_2$ were observed during these measurements, but not for $N_2O$. It is likely that $CH_4$ and $CO_2$ gases emanated from soil surface or up taken by the soil depending on other factors such as background concentrations and physicochemical soil conditions.

Estimation of Carbon Emission and Application of LCA (Life Cycle Assessment) from Barely (Hordeum vulgare L.) Production System (보리의 생산과정에서 발생하는 탄소배출량 산정 및 전과정평가 적용)

  • So, Kyu-Ho;Park, Jung-Ah;Lee, Gil-Zae;Ryu, Jong-Hee;Shim, Kyo-Moon;Roh, Kee-An
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.722-727
    • /
    • 2010
  • This study was conducted to estimate the carbon footprint and to establish the database of the LCI (Life Cycle Inventory) for barely cultivation system. Barley production system was separated into the naked barley, the hulled barley and the two-rowed barley according to type of barley species. Based on collecting the data for operating LCI, it was shown that input of fertilizer was the highest value of 9.52E-01 kg $kg^{-1}$ for two-rowed braley. For LCI analysis focussed on the greenhouse gas (GHG), it was observed that carbon footprint were 1.25E+00 kg $CO_2$-eq. $kg^{-1}$ naked braley, 1.09E+00 kg $CO_2$-eq. $kg^{-1}$ hulled braley and 1.71E+00 $CO_2$-eq. $kg^{-1}$ two-rowed barley; especially two-rowed barley cultivation system had highest emission value as 1.09E+00 kg $CO_2$ $kg^{-1}$ barley. It might be due to emit from mainly fertilizer production for barley cultivation. Also $N_2O$ was emitted at 7.55E-04 kg $N_2O\;kg^{-1}$ barley as highest value from hulled barley cultivation system because of high N fertilizer input. The result of life cycle impcat assessment (LCIA), it was observed that most of carbon emission from barely cultivation system was mainly attributed to fertilizer production and cropping unit. Characterization value of GWP was 1.25E+00 (naked barley), 1.09E+00 (hulled barley) and 1.71E+00 (two-rowed barely) kg $CO_2$-eq. $kg^{-1}$, respectively.

Effects of District Energy Supply by Combined Heat and Power Plant on Greenhouse Gas Emission Mitigation (열병합발전을 이용한 집단에너지사업의 온실가스 감축효과)

  • Shin, Kyoung-A;Dong, Jong-In;Kang, Jae-Sung;Im, Yong-Hoon;Kim, Da-Hye
    • Journal of Climate Change Research
    • /
    • v.8 no.3
    • /
    • pp.213-220
    • /
    • 2017
  • The purpose of this study is to analyze effects of Greenhouse Gas (GHG) emission reduction in district energy business mainly based on Combined Heat and Power (CHP) plants. Firstly this paper compares the actual carbon intensity of power production between conventional power plants and district energy plants. To allocate the GHG from CHP plants, two of different methods which were Alternative Generation Method and Power Bonus Method, have been investigated. The carbon intensity of power production in district energy plants ($0.43tonCO_2e/MWh$) was relatively lower than conventional gas-fired power plants ($0.52tonCO_2e/MWh$). Secondly we assessed the cost effectiveness of reduction by district energy sector compared to the other means using TIMES model method. We find that GHG marginal abatement cost of 'expand CHP' scenario (-$134/ton$CO_2$) is even below than renewable energy scenario such as photovoltaic power generation ($87/ton$CO_2$). Finally the GHG emission reduction potential was reviewed on the projected GHG emission emitted when the same amount of energy produced in combination of conventional power plants and individual boilers as substitution of district energy. It showed there were 10.1~41.8% of GHG emission reduction potential in district energy compared to the combination of conventional power plants and individual boilers.

The Emission Characteristics of Bio-Diesel Fuel in Heavy-Duty Engine (바이오 디젤 적용에 따른 대형엔진의 배출가스 특성)

  • Kim, Sun-Moon;Eom, Myoung-Do;Hong, Ji-Hyung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.499-506
    • /
    • 2010
  • Recently, a great deal of attention have been directed to the use of alternative fuels as a means to reduce vehicular emissions. As one of the promising alternative fuels, bio-diesel has advantages of a wide adaptability without retrofit of diesel engine. It is also effective enough to reduce CO, THC, $SO_x$, polycyclic aromatic hydrocarbons (PAHs) and PM. In this study, we investigated the emission characteristics of biofuels between different operating conditions, i.e., engine speed (1,400 rpm and 2,300 rpm), engine load (10% and 100%), bio-diesel blending (BD0, BD5 and BD20), and recirculation (EGR) rate of exhaust gas (0% and 20%). Relative performance of the system was evaluated mainly for the greenhouse gases ($CH_4$, $N_2O$ and $CO_2$). In addition, emission characteristics of ND-13 mode were also tested against both greenhouse gases and other airborne pollutants under emission regulation. The relative composition of bio-diesel has shown fairly clear effects on the emission quantities of CO, THC, and PM emission, although it was not on $NO_x$ and greenhouse gases. EGR rate has shown trade-off characteristics between $NO_x$ and PM.

Grain Boundary Trap Levels in ZnO-based Varistor (ZnO계 바리스터의 입계포획준위)

  • Kim, Myung-Chul;Park, Soon-Ja
    • Korean Journal of Materials Research
    • /
    • v.2 no.1
    • /
    • pp.12-18
    • /
    • 1992
  • The trap levels of ZnO-based varistor are obtained by Isothermal Capacitance Transient Spectroscopy method. Here ICTS measuring system consists of YHP 4192A Impedance Analyzer and a personal computer for the data acquisition. Between $-40^{\circ}C$ and $60^{\circ}C$, the grain boundary trap levels of 0.48 and 0.94eV were detected for $ZnO-Bi_2O_3-MnO$ system. The hole omission spectra are observed in the case of the addition of CoO into the $ZnO-Bi_2O_3$ system, while the electron emission spectra are detected in the case of the addition of MnO. The nonlinear resistance coefficient $\alpha$ increases with the decrease of the dormer concentration. Finally, the trap level density of $ZnO-Bi_2O_3-MnO$ system is found to decrease with the amount of CoO, while $\alpha$ is found to increase with the amount of CoO.

  • PDF