• 제목/요약/키워드: $COP_c$

검색결과 318건 처리시간 0.025초

Molecular Mechanism of Copper Resistance in Pseudomonas syringae pv. tomato.

  • Cha, Jae-Soon;Donald A. Cooksey
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 1995년도 Proceedings of special lectures on Molecular Biological Approaches to Plant Disease National Agricultural Science and Technology Institute Suwon, Korea
    • /
    • pp.97-117
    • /
    • 1995
  • Copper resistance in Pseudomonas syringae pv. tomato is determined by copper-resistance operon (cop) on a highly conserved 35 kilobase plasmid. Copper-resistant strains of Pseudomonas syringae containing the cop operon accumulate copper and develop blue clonies on copper-containing media. The protein products of the copper-resistance operon were characterized to provide an understanding of the copper-resistance mechanism and its relationship to copper accumulation. The Cop proteins CopA (72 kDa), CopB (39 kDa), and CopC (12 kDa) were produced only under copper induction. CopA and CopC were periplasmic proteins and CopB was an outer membrane protein. Leader peptide sequences of CopA, CopB, and CopC were confirmed by amino-terminal peptide sequencing. CopA, CopB, and CopC were purified from strain PT23.2, and their copper contents were determined. One molecule of CopA bound 10.9${\pm}$1.2 atoms of copper and one molecule of CopC bound 0.6${\pm}$0.1 atom of copper. P. syringae cells containing copCD or copBCD cloned behind the lac promoter were hypersensitive to copper. The CopD (32 kDa), a probable inner membrane protein, function in copper uptake with CopC. The Cop proteins apparently mediate sequestration of copper outside of the cytoplasm as a copper-resistance mechanism.

  • PDF

열교환기 온도차에 따른 새로운 LNG 액화사이클의 성능 특성 (Performance Characteristics of New LNG Liquefaction Cycles with Temperature Differences in the Heat Exchangers)

  • 윤정인;손창효
    • 동력기계공학회지
    • /
    • 제18권1호
    • /
    • pp.51-56
    • /
    • 2014
  • In this paper, the performance of the $CO_2-C_2H_6-N_2$ cascade liquefaction cycle with respect to temperature differences in the LNG heat exchangers is analyzed theoretically using HYSYS software and then compared the COP(coefficient of performance) of the cascade liquefaction cycles using $C_3H_8-C_2H_4-C_1H_4$ and $CO_2-N_2O-N_2$. In comparison of COP of three cycles, the cascade liquefaction cycles using $C_3H_8-C_2H_4-C_1H_4$ showed the highest COP. And the liquefaction cycle using $CO_2-C_2H_6-N_2$ and $CO_2-N_2O-N_2$ presented the second and third highest COP, respectively. In case of COP, the $C_3H_8-C_2H_4-C_1H_4$ cascade liquefaction cycle yields better COP. But, in terms of the environment and maintain, it is confirmed that the cascade liquefaction cycle using $CO_2-C_2H_6-N_2$ provides favorable characteristics.

Characterization of CaCOP1 Gene in Capsicum annuum Treated with Pathogen Infection and Various Abiotic Stresses

  • Guo, Jia;Seong, Eun-Soo;Wang, Myeong-Hyeon
    • Journal of Applied Biological Chemistry
    • /
    • 제50권4호
    • /
    • pp.227-233
    • /
    • 2007
  • We characterized a full-length cDNA of CaCOP1 from pepper. Phylogenetic analysis based on the deduced amino acid sequence of CaCOP1 cDNA revealed high sequence similarity to the COP1 gene in Oryza sativa (84% identity). CaCOP1 shares high sequence identity with regulatory protein in Arabidopsis (84%), constitutively photomorphogenic 1 protein in Pisum sativum (81%) and COP1 homolog in Lycopersicon esculentum (79%). CaCOP1 gene exists single copy in the chili pepper genome. Expression of CaCOP1 was reduced in response to inoculation of non-host pathogens. The expression of this gene under abiotic and oxidative stresses was investigated, including 200 mM NaCl, 200 mM mannitol, cold ($4^{\circ}C$), 100 ${\mu}M$ abscisic acid (ABA), and 10 mM hydrogen peroxide ($H_2O_2$). CaCOP1 was induced significantly 3 h after low temperature treatment but not by dehydration or high salinity. Moreover, CaCOP1 was not induced by plant hormone ABA. These observations suggest that CaCOP1 gene plays a role in abiotic stress and may be belong to ABA-independent regulation system.

열원 및 부하조건에 따른 물-공기 히트펌프 시스템의 성능분석 (Performance Analysis of Water-to-Air Heat Pump System under Water Temperature and Load Ratio)

  • 조용;이동근
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.194.2-194.2
    • /
    • 2011
  • Heating and cooling performance has been analyzed for the water-source heat pump system using raw water from Daechung reservoir. During heating operation from March to May, water temperature is not good condition for a heat source due to the higher atmospheric temperature. Avearged heating load ratio is only 14.3%, and the averaged unit COP and system COP are estimated to be 2.46 and 2.15 respectively. The COP is affected considerably by the water temperature, and the unit COP is increased from 2.16 at $5^{\circ}C$ to 2.95 at $11^{\circ}C$. Cooling performance is analyzed with the measured data from June to August. During cooling operation, raw water has lower temperature by 4. $5^{\circ}C{\sim}4.7^{\circ}C$ than the atmosphere. The load ratio is 39.2%, and the averaged unit COP and system COP are estimated to be 7.25 and 6.13 respectively. The heating COP is affected by the load ratio rather than water temperature. The COP is increased for 20%~40% load ratio, while is decreased for 40%~60% load ratio. It is estimated that the compressor operation combination for 3 (two constant speed and one inverter) compressors is changed for the load ratio.

  • PDF

Aspergillus nidulans 분비소낭 구성요소인 α-COP과 ε-COP의 결합 부위 분석 (Analysis of Protein Domain for Interaction between α-COP and ε-COP in Aspergillus nidulans)

  • 송은정;김기현;이환희;박정석;강은혜;박희문
    • 한국균학회지
    • /
    • 제40권4호
    • /
    • pp.224-228
    • /
    • 2012
  • A. nidulans ${\alpha}$-COP과 상호작용하는 단백질을 동정하기 위하여 ${\alpha}$-COP을 암호하는 유전자를 bait로 yeast two-hybrid 스크리닝용 A. nidulans cDNA 라이브러리를 탐색한 결과, COPI 소낭의 구성요소 중 하나인 ${\varepsilon}$-COP을 암호화하고 있는 유전자를 동정하고 $aneA^+$($\underline{A}$spergillus $\underline{n}$idulans $\underline{e}$psilon-COP, $AN{\varepsilon}$-COP)으로 명명하였다. $aneA^+$ 유전자는 총 296개의 아미노산을 암호화하고 있으며, 다른 균류의 ${\varepsilon}$-COP과 높은 상동성을 보였다. Yeast two hybrid 시스템으로 두 단백질 간의 상호작용 부위를 분석한 결과, ${\alpha}$-COP의 COOH 도메인과 ${\varepsilon}$-COP의 C-말단부가 필수 부위였으며, ${\alpha}$-COP N-말단의 WD 도메인과 ${\varepsilon}$-COP의 TPR 부위는 두 단백질 간의 결합을 촉진하는 조절부위로 밝혀졌다. 또한 사상균인 A. nidulans와 효모류인 S. cerevisiae에서 ${\alpha}$-COP과 ${\varepsilon}$-COP 간 작용양상이 유사한 것으로 보아, COPI 소낭의 구성요소인 ${\alpha}$-COP과 ${\varepsilon}$-COP 간의 상호작용 기전은 진핵세포 내에서 진화적으로 잘 보존되어 있는 것으로 추정되었다.

초피나무 열매 추출물의 COP1 및 PPAR-α 조절을 통한 자외선에 대한 피부 보호 효과 (Effect of Zanthoxylum piperitum Extract on Human Skin Protection from UVB by Regulation of COP1 and PPAR-α)

  • 김윤선;김유미;이상화
    • 대한화장품학회지
    • /
    • 제42권4호
    • /
    • pp.393-401
    • /
    • 2016
  • 자외선은 피부 노화를 가속화하여 피부 광노화를 유발하고, 일광 화상, 피부암 등을 유발한다. 자외선 차단제를 사용하더라도 일부 자외선에 의하여 피부 손상은 유발될 수 있기 때문에 자외선에 대한 피부 자체의 방어력을 올려주는 것이 필요하다. 최근, 식물에서 자외선 보호 기능을 하는 것으로 알려진 COP1이 사람의 피부에서도 자외선에 대한 반응들을 조절한다고 새롭게 밝혀졌다. 본 연구에서는, COP1과 그의 결합 단백질 DET1이 사람 피부의 각질형성세포에서 자외선에 대한 시그날 조절 물질인 c-Jun 단백질 양을 조절하는 것을 확인하였다. 자외선에 노출 시 COP1과 DET1 발현이 감소하였고, 그 영향으로 c-Jun 단백질이 증가하였다. 반대로 COP1과 DET1을 발현하는 DNA를 transfection 시켜줄 경우 c-Jun 단백질 양이 감소하였다. 피부 각질형성 세포에서 COP1과 DET1의 발현을 조절할 수 있는 물질을 탐색한 결과, 초피나무 열매 추출물이 COP1과 DET1의 발현을 증가시켜 주었다. 초피나무 열매 추출물은 c-Jun 시그날에 의해서도 조절되는 MMP1이 자외선에 의해 유도되는 것을 억제하였다. 뿐만 아니라, 초피나무 열매 추출물 PPAR-${\alpha}$ 활성이 있어 장벽강화를 통한 피부 보호 효과가 있는데, 자외선에 의하여 염증 유발 물질인 IL-6와 IL-8의 발현이 증가하는 것도 억제하였다. 사람의 팔에 자외선을 쪼여 준 경우에도 초피나무 열매 추출물이 홍반이 생기는 것을 억제하고 홍반에 의한 색소침착도 억제하였다. 종합적으로, 초피나무 열매 추출물은 다양한 메카니즘을 통하여 자외선으로부터 피부를 보호해 줄 것으로 기대된다.

Cloning and Expression Characteristics of Pharbitis nil COP1 (PnCOP1) During the Floral Induction

  • 김윤희;김성룡;허윤강
    • Journal of Photoscience
    • /
    • 제12권1호
    • /
    • pp.1-9
    • /
    • 2005
  • The ubiquitin E3 ligase COP1 (Constitutive Photomorphogenesis 1) is a protein repressor of photomorphogenesis in Arabidopsisplants, and it found in various organisms, including animals. The COP1 protein regulates the stability of many of the light-signaling components that are involved in photomorphogenesis and in the developmental processes. To study the effect of COP1 on flowering in a short day plant, we have cloned a full-length of PnCOP1 (Pharbitis nil COP1) cDNA from Pharbitis nil Choisy cv. Violet, and we examined its transcript levels under various conditions. A full-length PnCOP1 cDNA consists of 2,280 bp nucleotidesthat contain 47 bp of 5'-UTR, 232 bp of 3'-UTR including the poly (A) tail, and 1,998 bp of the coding sequence. The deduced amino acid sequence contains 666 amino acids, giving it a theoretical molecular weight of 75 kD and a isolectric point of 6.2. The PnCOP1 contains three distinct domains, an N-terminal $Zn^2+$-binding RING-finger domain, a coiled-coil structure, and WD40 repeats at the C-terminal, implying that the protein plays a role in protein-protein interactions. The PnCOP1 transcript was detected in the cotyledon, hypocotyls and leaves, but not in root. The levels of the PnCOP1 transcript were reduced in leaves that were a farther distance away from the cotyledons. The expression level of the PnCOP1 gene was inhibited by light, while the expression was increased in the dark. During the floral inductive 16 hour-dark period for Pharbitis nil, the expression was increased and it reached its maximum at the 12th hour of the dark period. The levels of PnCOP1 mRNA were dramatically reduced upon light illumination. These results suggest that PnCOP1 may play an important function in the floral induction of Pharbitis nil.

  • PDF

The Heavy Metal Tolerant Soil Bacterium Achromobacter sp. AO22 Contains a Unique Copper Homeostasis Locus and Two mer Operons

  • Ng, Shee Ping;Palombo, Enzo A.;Bhave, Mrinal
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권6호
    • /
    • pp.742-753
    • /
    • 2012
  • Copper-containing compounds are introduced into the environment through agricultural chemicals, mining, and metal industries and cause severe detrimental effects on ecosystems. Certain microorganisms exposed to these stressors exhibit molecular mechanisms to maintain intracellular copper homeostasis and avoid toxicity. We have previously reported that the soil bacterial isolate Achromobacter sp. AO22 is multi-heavy metal tolerant and exhibits a mer operon associated with a Tn21 type transposon. The present study reports that AO22 also hosts a unique cop locus encoding copper homeostasis determinants. The putative cop genes were amplified from the strain AO22 using degenerate primers based on reported cop and pco sequences, and a constructed 10,552 base pair contig (GenBank Accession No. GU929214). BLAST analyses of the sequence revealed a unique cop locus of 10 complete open reading frames, designated copSRABGOFCDK, with unusual separation of copCD from copAB. The promoter areas exhibit two putative cop boxes, and copRS appear to be transcribed divergently from other genes. The putative protein CopA may be a copper oxidase involved in export to the periplasm, CopB is likely extracytoplasmic, CopC may be periplasmic, CopD is cytoplasmic/inner membrane, CopF is a P-type ATPase, and CopG, CopO, and CopK are likely copper chaperones. CopA, B, C, and D exhibit several potential copper ligands and CopS and CopR exhibit features of two-component regulatory systems. Sequences flanking indicate the AO22 cop locus may be present within a genomic island. Achromobacter sp. strain AO22 is thus an ideal candidate for understanding copper homeostasis mechanisms and exploiting them for copper biosensor or biosorption systems.

The Specific Binding Mechanism of the Antimicrobial Peptide CopA3 to Caspases

  • Ho Kim
    • 한국미생물·생명공학회지
    • /
    • 제51권3호
    • /
    • pp.243-249
    • /
    • 2023
  • We recently found that the insect-derived antimicrobial peptide CopA3 (LLCIALRKK) directly binds to and inhibits the proteolytic activation of caspases, which play essential roles in apoptotic processes. However, the mechanism of CopA3 binding to caspases remained unknown. Here, using recombinant GST-caspase-3 and -6 proteins, we investigated the mechanism by which CopA3 binds to caspases. We showed that replacement of cysteine in CopA3 with alanine caused a marked loss in its binding activity towards caspase-3 and -6. Exposure to DTT, a reducing agent, also diminished their interaction, suggesting that this cysteine plays an essential role in caspase binding. Experiments using deletion mutants of CopA3 showed that the last N-terminal leucine residue of CopA3 peptide is required for binding of CopA3 to caspases, and that C-terminal lysine and arginine residues also contribute to their interaction. These conclusions are supported by binding experiments employing direct addition of CopA3 deletion mutants to human colonocyte (HT29) extracts containing endogenous caspase-3 and -6 proteins. In summary, binding of CopA3 to caspases is dependent on a cysteine in the intermediate region of the CopA3 peptide and a leucine in the N-terminal region, but that both an arginine and two adjacent lysines in the C-terminal region of CopA3 also contribute. Collectively, these results provide insight into the interaction mechanism and the high selectivity of CopA3 for caspases.

Genomic Organization of ancop Gene for ${\alpha}-COP$ Homolog from Aspergillus nidulans

  • Lee, Hwan-Hee;Chae, Shun-Kee;Kim, Jeong-Yoon;Maeng, Pil-Jae;Park, Hee-Moon
    • Mycobiology
    • /
    • 제28권4호
    • /
    • pp.171-176
    • /
    • 2000
  • We have cloned a ${\alpha}-COP$ homolog, ancop, from Aspergillus nidulans by colony hybridization of chromosome specific library using ${\alpha}-COP$ homologous fragment as a probe. The probe DNA was amplified with degenerated primers designed by comparison of conserved region of the amino acid sequences of Saccharomyces cerevisiae ${\alpha}-COP$, Homo sapiens HEP-COP, and Drosophila melanogaster ${\alpha}-COP$. Full length cDNA clone was also amplified by RT-PCR. Comparison of genomic DNA sequence with cDNA sequence obtained by RT-PCR revealed 7 introns. Amino acid sequence similarity search of the anCop with other ${\alpha}-COPs$ gave an overall identity of 52% with S. cerevisiae, 47% with human and bovine, 45% with Drosophila and Arabidopsis. In upstream region from the transcription start site, a putative TATA and CAAT motif were also identified.

  • PDF