• Title/Summary/Keyword: $COD_{cr}$

Search Result 332, Processing Time 0.025 seconds

Synthesis of Magnetic Sonophotocatalyst and its Enhanced Biodegradability of Organophosphate Pesticide

  • Lirong, Meng;Jianjun, Shi;Ming, Zhao;Jie, He
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3521-3526
    • /
    • 2014
  • A magnetic sonophotocatalyst $Fe_3O_4@SiO_2@TiO_2$ is synthesized for the enhanced biodegradability of organophosphate pesticide. The as-prepared catalysts were characterized using different techniques, such as X-ray diffraction (XRD) and transmission electron microscopy (TEM). The radial sonophotocatalytic activity of $Fe_3O_4@SiO_2@TiO_2$ nanocomposite was investigated, in which commercial dichlorvos (DDVP) was chosen as an object. The degradation efficiency was evaluated in terms of chemical oxygen demand (COD) and enhancement of biodegradability. The effect of different factors, such as reaction time, pH, the added amount of catalyst on $COD_{Cr}$ removal efficiency were investigated. The average $COD_{Cr}$ removal efficiency reached 63.13% after 240 min in 12 L sonophotocatalytic reactor (catalyst $0.2gL^{-1}$, pH 7.3). The synergistic effect occurs in the combined sonolysis and photocatalysis which is proved by the significant improvement in $COD_{Cr}$ removal efficiency compared with that of solo photocatalysis. Under this experimental condition, the $BOD_5/COD_{Cr}$ ratio rose from 0.131 to 0.411, showing a remarkable improvement in biodegradability. These results showed that sonophotocatalysis may be applied as pre-treatment of pesticide wastewater, and then for biological treatment. The synthesized magnetic nanocomposite had good photocatalytic performance and stability, as when it was used for the fifth time, the $COD_{Cr}$ removal efficiency was still about 62.38%.

NPS runoff reduction analysis in accordance with the slope of the tillage method (경운방법의 경사도에 따른 비점오염원 유출 저감 효과 분석)

  • Jeon, Je Hong;Won, Chul Hee;Moon, Sang Gi;Lee, Su In;Choi, Jung Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.425-425
    • /
    • 2015
  • 본 연구는 밭에서 발생하는 비점오염원의 저감 효과를 분석하기 위하여 최적관리기법(BMPs) 중 경운방법과 침투짚단을 하여 효과를 분석하고자 하였다. 시험포 1개의 면적은 $150m^2$ (폭 5 m, 경사장 30 m)이며, 모두 사질토의 특성을 가진 토양이다. 시험포는 총 8개(경사도 3% 4개, 8% 4개)로 각각 무경운 시험포 2개와 경운 시험포 1개 그리고 침투 짚단을 설치한 경운 시험포 1개로 경사도와 영농방법을 다르게 조성하였다. 실험의 오차를 줄이기 위하여 강우지속시간과 강우량 그리고 강우강도가 일정한 인공강우 실험을 수행하였으며, 실험시 바람에 의한 강우량의 오차를 줄이기 위해 날씨가 맑은 날에 실시하였다. 또한, 선행무강우일수 7일로 유지하여 토양의 함수비를 동일한 조건이 되도록 하였다. 총 3회의 인공강우실험에서 강우강도는 30 mm/hr 이였으며, 강우로 인해 발생한 유출수는 수위를 측정한 뒤, 수위-유량곡선식을 이용하여 유량으로 환산하였으며, 이때 수질시료를 채취하였다. 채취된 수질시료는 $BOD_5$, $COD_{Cr}$, $COD_{Mn}$, TN, TP, DOC 등의 6개 항목을 분석하였다. 연구결과 경사도 3%의 침투짚단 시험포에서 오염부하는 경운 시험포 대비 $BOD_5$는 25.4%, $COD_{Cr}$은 20.5%, $COD_{Mn}$은 2.1%, DOC는 40.8%, 영양염류인 TN과 TP는 각각 23%와 8.7%가 저감되는 것으로 나타났다. 또한 경사도 3%의 무경운 시험포에서 오염부하는 경운 시험포 대비 $BOD_5$는 57.5%, $COD_{Cr}$은 59.8%, $COD_{Mn}$은 65%, TN과 TP는 65.4%와 75%로 저감되었다. 그리고 경사도 8%에서 경운 시험포대비 침투짚단 시험포의 오염부하는 $BOD_5$ 19.6%, $COD_{Cr}$$COD_{Mn}$은 각각 7.8%와 10% 그리고 영양염류인 TN은 15.5%, TP는 11.2%가 저감되는 것으로 나타났다. 경사도 8%에서 무경운 시험포에서는 경운 시험포 대비 $BOD_5$ 70.9%, $COD_{Cr}$$COD_{Mn}$은 각각 74.9%와 81.3% 그리고 영양염류인 TN은 70.2%, TP는 70.1%가 저감된 것으로 나타났다. 본 연구결과와 같이 경운을 하는 관행방법에 비해 토양의 침투능이 유지할 수 있는 무경운 방법이나 침투짚단을 활용하는 방법이 밭에서 발생하는 비점오염원을 저감할 수 있는 것으로 나타났다. 그러나, 본 연구의 결과는 3번의 인공강우 실험을 통해 분석된 결과로써 추가적인 연구를 통해 다양한 경사도와 영농방법에 따른 비점오염물질의 저감효과를 분석해야 할 것으로 보여진다.

  • PDF

Effect of Solidified/Stabilized Sewage Sludge using Neutral Solidifying Chemical Agent and Alkaline Agent as Landfill Cover on Decomposition of Organic Matter in Lysimeter (중성계 및 알칼리성 고화재를 이용한 고화하수슬러지의 복토재가 모형매립조 내 유기물 분해에 미치는 영향)

  • Kim, Hye-Jin;Park, Jin-Kyu;Song, Sang-Hoon;Lee, Nam-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.768-774
    • /
    • 2008
  • To evaluate the effect of the solidified/stabilized sewage sludge on landfill sites, lysimeter tests were conducted. Lysimeters (LR1, LR2, and LR3) were filled with the material(Compost : Fodder : Sand = 10 : 10 : 80) and covered with different types of the cover soils, the G solidified sludge produced from the neutral solidifying chemical agent(LR1), the A solidified sludge produced from the alkali solidifying chemical agent(LR2), and the weathered granite soil(LR3). Those lysimeters were kept at the temperature controlled room with 30 $\pm$ 2$^{\circ}C$ for about 450 days. As the results, it was appeared LR2 > LR1 > LR3 that total gas production rate(L), gas production rate(L/VS(kg)) and cumulative gas(CO$_2$ + CH$_4$) production. There were not significant differences at decrease of the COD$_{Cr}$ in the leachate from LR1 and LR3. Thus, it had been shown that the use of the G solidified sludge as cover soil did not affect the COD$_{Cr}$ in the leachate. The COD$_{Cr}$ from LR2 had been increased since around 250 days because solidified/stabilized sewage sludge became re-slurry. T-N and T-P from LR3 also were higher than LR1 and LR2. Also were, the use of the solidified/stabilized sewage sludge as a cover soil, therefore, did not affect the T-N and T-Pconcentrations in the leachate.

Application of Photocatalytic Degradation for Efficient Treatment of Organic Matter in Landfill Leachate in Jeju Island (제주도 매립장 침출수 중 유기물의 효율적 처리를 위한 광촉매 분해 반응의 응용)

  • Lee, Chang-Han;Lee, Taek-Kwan;Cho, Eun-Il;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.31 no.8
    • /
    • pp.677-689
    • /
    • 2022
  • In order to photocatalytically treat organic matter (CODCr) and chromaticity effectively, chemical coagulation and sedimentation processes were employed as a pretreatment of the leachate produced from landfill in Jeju Island. This was performed using FeCl3·6H2O as a coagulant. For the treated leachate, UV/TiO2 and UV/TiO2/H2O2 systems were investigated, using 4 types of UV lamps, including an ozone lamp (24 W), TiO2 as a photocatalyst, and/or H2O2 as an initiator or inhibitor for photocatalytic degradation. In the chemical coagulation and sedimentation process using FeCl3·6H2O, optimum removal was achieved with an initial pH of 6, and a coagulant dosage of 2.0 g/L, culminating in the removal of 40% CODCr and 81% chromaticity. For the UV/TiO2 system utilizing an ozone lamp and 3 g/L of TiO2, the optimum condition was obtained at pH 5. However, the treated CODCr and chromaticity did not meet the emission standards (CODCr: 400 mg/L, chromaticity: 200 degrees) in a clean area. However, for a UV/TiO2/H2O2 system using 1.54 g/L of H2O2 in addition to the above optimum UV/TiO2 system, the results were 395 mg/L and 160 degrees, respectively, which were within the emission standard limits. The effect of the UV lamp on the removal of CODCr, and chromaticity of the leachate decreased in the order of ozone (24 W) lamp > 254 nm (24 W) lamp > ozone (14 W) lamp > 254 nm (14 W) lamp. Only CODCr and chromaticity treated with the ozone (24 W) lamp met the emission standards.

Characteristics of Organic Compounds Removal and Microbe Attachment in Packed Bed Column Reactor Using Surface-modified Media (표면개질 담체를 이용한 충전탑 반응기에서 유기물 제거 및 미생물 부착 특성)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.27 no.3
    • /
    • pp.145-150
    • /
    • 2012
  • This study was accomplished using packed bed column reactors that contain nonsurface-modified polypropylene media and surface-modified media from hydrophobic surface property into hydrophilic property by ion beam irradiation. The objectives of this research was investigated the characteristics of organic compounds removal and microbe attachment from sewage of school cafeteria in these reactors. In 736.8 mg/L of the average inflow $COD_{Cr}$ concentration the reactors with and without surface modification showed 81.8% and 70.3% of average $COD_{Cr}$ removal efficiencies, respectively, which proves the $COD_{Cr}$ removal efficiency of surface-modified media reactor is higher than that of nonsurface-modified media reactor. After 90 days, there were maximum differences between modified system and non-modified system. In that time the maximum removal efficiency of $COD_{Cr}$ was 96.5% in modified system and was 85.2% in non-modified system that showed removal efficiency of surface-modified media system is 11.3% higher than that of nonsurface-modified media system. The average removal efficiency of SS was 80.4% for the surface modified system and 61.6% for the non-modified system under same condition. Also, the reactor of surface-modified media has advantage on microbe attachment and biofilm formation.

Treatment of Refractory Dye Wastewater Using AOPs (고도산화공정(AOPs)을 이용한 난분해성 염색폐수 처리)

  • Kim, Jong-Oh;Lee, Kwon-Ki;Jung, Jong-Tae;Kim, Young-Noh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.3
    • /
    • pp.21-29
    • /
    • 2006
  • The treatment performance of ozonation and three types of advanced oxidation processes (AOPs) such as $O_3/H_2O_2$, $O_3/UV$, $O_3/H_2O_2/UV$ was experimentally investigated for the treatment of refractory synthetic dye wastewater. The removal efficiency of $COD_{cr}$, color and biodegradability ($BOD_5/COD_{cr}$) were relatively evaluated in each treatment unit with simulated dye wastewater. Optimal operational conditions of pH, temperature, dosage and circulation flow rate were also investigated. All suggested processes revealed an effectiveness for the removal of color within a short operational time, moreover, $O_3/H_2O_2/UV$ process showed the highest $COD_{cr}$ removal and biodegradability enhancement among proposed oxidation process.

  • PDF

Wastewater Treatment Characteristics by Pseudomonas sp. BLP2052 and Flavobacterium sp. BLP20515 Isolated from Sewage (선별된 Pseudomonas sp. BLP2052와 Flavobacterium sp. BLP20515의 폐하수 처리 특성)

  • 박철환;최광근;임지훈;이상훈;김상용;이진원
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.153-159
    • /
    • 1999
  • Fifteen microbes have been isolated from Jangja pond in Kuri-Si, Kyeonggi-Do. Among them, two strains showed excellent COD removal from wastewater, which were named Pseudomonas sp. BLP2052 and Flavobacterium sp. BLP20515, respectively. Optimal pH and temperature for the cell growth were 7.0 and $30^{\circ}C$ for both strains. Pseudomonas sp. BLP2052 and Flavobacterium sp. BLP20515 was applied to the reactor to treat wastewater and 66.0% and 65.7% COD (chemical oxygen demand) removal was achieved, respectively. Comparing these results to the case of applying mixed microbes present in Jangja pond, COD removal rate was 15% less. But when adding the selected microbes to the wastewater containing mixed microbes, COD removal rate increased by 5%. After 84 hour operation, we achieved 85.6% COD removal. When inhibitors were added less than 100 ppm, during the microbial wastewater treatment, Fe, Zn, Al, phenol and Cr influenced microbial activity more deterioratively in order. In the case of over 300 pm, Cr, Fe, Zn, Al and phenol showed severe deteriorative effect in order.

  • PDF

PERFORMANCE OF TWO-PHASE UASB REACTOR IN ANAEROBIC TREATMENT OF WASTEWATER WITH SULFATE

  • Oh, Sae-Eun
    • Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.8-15
    • /
    • 2007
  • Two phase UASB reactors for treating wastewater with sulfate were operated to assess the performance and competition of organics between sulfate reducing bacteria(SRB) and methane producing bacteria(MPB), and the change of characteristics of microorganisms. The reactors were fed in parallel with a synthetic wastewater of 4,000-5,000 mgCOD/L and sulfate concentration of $800-1,000\;mgSO_4/L$. In the MPR(methane producing reactor) and CR(control reactor), COD removal efficiencies were 90% and 60%, respectively, at the OLR(organic loading rate) of 6 gCOD/L, while the amount of biogas and methane content were 6.5 L/day and 80%, and 3 L/day and 50%, respectively. However, the portion of electron flow used by SRB at the OLR of 6 gCOD/L day in MPR and CR was 3% and 26%, respectively. This indicated that the increase of OLR of wastewater containing high sulfate like CR resulted in activity decrease and cell decay of MPB, while SRB was adapted immediately to new environment. The MPB activities in MPR and CR were 2 and $0.38\;kgCH_4-COD$/gVSS day at the OLR of 6 gCOD/L. This indicated hat SRB dominated gradually over MPB during long-term operation with wastewater containing sulfate as a consequence of outcompeting of SRB over MPB. In addition, the solution within AFR was maintained around pH 5.0, the MPB such as Methanothrix spp. which was very important to formation of granules was detached from the surface of granules due to the decrease of activity by limitation of substrate transportation into MPB. Therefore, a significant amount of sludge was washed out from the reactor.

Selection of the Optimum Organic Matter Index for Surface Water Quality Management (지표수 수질관리를 위한 적정 유기물질지표 선정)

  • Han, Dae Ho;Choi, Ji-Yong
    • Journal of Environmental Policy
    • /
    • v.10 no.4
    • /
    • pp.61-80
    • /
    • 2011
  • Through concentrated investments in environmental regulations centered around BOD, which is a biodegradable matter index, and basic environmental infrastructures, national BOD pollution level has continuously improved. Nonetheless, limitations of BOD management system has become evident through nation-wide stagnation and/or increases of refractory organic matters, such as COD, at main drinking water sources, and the need for a new index, which can easily indicate different environmental conditions, has increased. Therefore, this study suggests a new organic management index for a proper management of surface water. $COD_{Cr}$ and TOC were examined as candidates for surface water quality management index, and it was found that TOC was more appropriate than $COD_{Cr}$ as an organic matter management index. Through this study, it was found that TOC possesses following qualities: a more representative index; international acceptability; monitoring program is easier; better availability of analysis techniques; better accuracy and precision of analysis; less time required for analysis; ease of operation; management of disinfection byproducts; connection with present policies; existence of foreign and domestic application case studies; and correlation with water ecosystem.

  • PDF

Removal of Heavy Metals from Acid Mine Drainage using AFMR Process (AFMR 공정을 이용한 광산폐수의 중금속 제거)

  • Paik, Byeong Cheon;Kim, Gwangbok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.313-321
    • /
    • 2000
  • This research is to remove heavy metals from AMD(Acid Mine Drainage) using AFMR(Anaerobic Floating Media Reactor) process. Two AFMR were operated at HRT(hydraulic retention time) of 3 days. COD/sulfate ratio from 0.3 to 0.8, temperature from $30^{\circ}C$ to $35^{\circ}C$, and alkalinity of 1.000mg/l(as $CaCO_3$). At COD/sulfate($SO{_4}^{2-}$) ratio of 0.5 and temperature of $35^{\circ}C$, the ratio of reduced sulfate($SO{_4}^{2-}$)/removed COD(mg/mg) kept about 1 and the reactor achieved 99.99% of Cr, Pb anee Fe, 98% of Cd, and 90% of Mn removal efficiencies, respectively. Decreasing temperature to $30^{\circ}C$ increased the ratio of reduced sulfate($SO{_4}^{2-}$)/removed COD(mg/mg) to 1.37. Amount of sulfate reduction maximized at the temperature of $30^{\circ}C$ and the COD/sulfate ratio of 0.4 in the influent and then removal efficiencies of heavy metals were 99.99% of Fe, 99.99% of Pb, 99,99% of Cr, 97.3% of Mn, 99.9% of Zn, 99.9% of Cd and 99.9% of Cu.

  • PDF