• 제목/요약/키워드: $CH_4$ Reduction

Search Result 285, Processing Time 0.053 seconds

NOx Formation and Flame Structure in $CH_4/Air-CO_2$ Counterflow Diffusion Flames ($CH_4/Air-CO_2$ 대향류 확산화염의 NOx 생성 특성 및 화염구조)

  • Han, J.W.;Lee, S.R.;Lee, C.E.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.949-955
    • /
    • 2000
  • Numerical study with detailed chemistry has been conducted to investigate the NOx formation and structure in $CH_4/Air-CO_2$ counterflow diffusion flames. The importance of radiation effect is identified and the role of $CO_2$ addition is addressed to thermal and chemical reaction effects, which can be precisely specified through the introduction of an imaginary species. Also NO separation technique is utilized to distinguish the contribution of thermal and prompt NO formation mechanisms. The results are as follows : The radiation effect is dominant at low strain rates and it is intensified by $CO_2$ addition. Thermal effect mainly contributes to the changes in flame structure and the amount of NO formation but the chemical reaction effect also cannot be neglected. It is noted that flame structure is changed considerably due to the addition of $CO_2$ in such a manner that the path of methane oxidation prefers to take $CH_4 {\rightarrow}CH_3{\rightarrow}C_2H_6{\rightarrow}C_2H_5$ instead of $CH_4 {\rightarrow}CH_3{\rightarrow}CH_2{\rightarrow}CH$. At low strain rate(a=10) the reduction of thermal NO is dominant with respect to reduction rate, but that of prompt NO is dominant with respect to total amount.

  • PDF

Effect of $CO_2$ Addition on Flame Structure and NOx Formation of $CH_4-Air$ Counterflow Diffusion Flames ($CO_2$ 첨가가 $CH_4$-공기 대향류 확산화염의 구조 및 NOx 생성에 미치는 영향)

  • Lee, S.R.;Han, J.W.;Lee, C.E.
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.97-108
    • /
    • 1999
  • This numerical study was to investigate the effect of $CO_2$ addition on the structures and NOx formation characteristics in $CH_4$ counterflow diffusion flame. The importance of radiation effect was identified and $CO_2$ addition effect was investigated in terms of thermal and chemical reaction effect. Also the causes of NOx reduction were clarified by separation method of each formation mechanisms. The results were as follows : The radiation effect was intensified by $CO_2$ addition. Thermal effect mainly contributed to the changes in flame structure and the amount of NO formation but the chemical reaction effect also cannot be neglected. The reduction of thermal NO was dominant with respect to reduction rate, but that of prompt NO was dominant with respect to total amount.

  • PDF

Comparison of Effects of Chaff and Sawdust on Aerobic Composting of Food Wastes (음식물쓰레기의 호기성 퇴비화에 있어서 왕겨와 톱밥의 영향에 관한 비교 연구)

  • 박석환
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.3
    • /
    • pp.28-34
    • /
    • 2003
  • This study was performed to compare the effects of chaff and sawdust as bulking materials on temperature, pH, weight and volume reduction and salinity in aerobic composting of food wastes. Volume ratios of food wastes to chaff in reactor of Control, Ch-l, Ch-2, Ch-3 and Ch-4 were 4:0, 4:1, 4:2, 4:3 and 4:4, respectively. Volume ratios of food wastes to sawdust in reactor of Control, Sd-l, Sd-2, Sd-3 and Sd-4 were 4:0, 4:1, 4:2, 4:3 and 4:4, respectively. Reactors were operated for 24 days with 1 hour stirring by 1 rpm and 2 hours aeration per day. The lowering of the volume ratio of food wastes to chaff and sawdust resulted in the reaction at higher reaction temperature and the elongation of the high temperature reaction period. The lowering of the volume ratio of food wastes to chaff and sawdust resulted in faster pH increase. In the volume ratio of 4:3 and 4:4, pH increased faster in food-chaff mixtures than in food-sawdust mixtures. The lowering of the volume ratio of food wastes to chaff and sawdust resulted in faster steady state in the weight reduction rate and the volume reduction rate. The weight reduction rates of chaff mixtures were higher than those of sawdust mixtures, but the volume reduction rates of sawdust mixtures were more higher than those of chaff mixtures. Salinity increased as composting reaction proceeded, due to reduction in mass weight. The final salinity of Control was 2.79%, and the final range of salinities of chaff and sawdust mixtures were 2.18∼2.37% and 1.86∼2.05%, respectively.

Research on Improvement of CH4 Reduction Performance of NGOC for CNG Bus (CNG 버스용 NGOC의 CH4 저감 성능 향상을 위한 연구)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.708-715
    • /
    • 2017
  • Recently, in order to meet the stricter emission regulations, the proportion of after-treatments for vehicles and vessels has been increasing gradually. The objective of this study is to investigate the improvement of $CH_4$ reduction ability of natural gas oxidation catalyst (NGOC), which reduces toxic gases emitted from CNG buses. Thirteen NGOCs were prepared, and the conversion performance of noxious gases according to the type of supports, the loading amount of noble metal, and surfactant and aging were determined. Support Zeolite supported on No. 3 $NGOC(1Pt-1Pd-3MgO-3CeO_2/(46TiO_2+23Al_2O_3+23Zeolite)$ is an anionic alkali metal/earth metal component that improved the oxidation reactivity between CO and NO and noble metal dispersion, and thus enhanced the $CH_4$ reduction ability. As the loading amount of Pd, a noble metal with a high selectivity to $CH_4$, was increased, the number of reaction sites was increased and the ability to reduce $CH_4$ was improved. No. 11 $NGOC(1Pt-1Pd-3MgO-3CeO_2/(Z20+Al80)$(pH=8.5), to which nitrate surfactant had been added, exhibited well dispersed catalyst particles with no agglomeration and improved the $CH_4$ reduction ability by 5-15%. The $NGOC(2Pt-2Pd-3Cr-3MgO/90Al_2O_3)$(48h aging), which was mildly thermal aged for 48h, increased the $CH_4$ reduction ability to about 10% or less as compared with No. 12 NGOC(Fresh).

Analysis of Methane from Screened Soil of Closed Landfill and Application of Landfarming for the Reduction of the Methane (사용종료 매립지 선별토양의 메탄 발생 분석 및 토양경작기술 적용 효과 연구)

  • Kim, Kyung;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.5
    • /
    • pp.40-45
    • /
    • 2010
  • In this study, methane production by reuse of screened soil of landfill was estimated and the effect of application of landfarming for the reduction of methane was investigated. The study soil sampled from S closed landfill contains VS 9.8~12.8% and its BOD/COD is 0.31~0.33 which is more than three times over 0.1, the BOD/COD stabilization criteria of Ministry of Environment. The effective remediation technology for the reduction of organics of soil, landfarming was applied to the screened soil for 60 days. VS and TPH removal showed 5.2~8.3% and 67~74% respectively, and the reduction of VS until 30 day charged 70% of the total reduction. BMP test showed 27.77~30.46 mL $CH_4$/g VS and total methane production from total screened soil for remediation is expected about 260.4 $CH_4$ ton. Expected amount of methane production of the screened soil by landfarming application is 12.9 $CH_4$ ton, which shows 95% gas reduction effect and landfarming is effective for the reduction of methane production from screened soil of landfill.

Effects of Chaff as Bulking Materials on Aerobic Composting of Food Wastes

  • Park, Seok-Hwan
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.208-212
    • /
    • 2003
  • This study was performed to examine the effects of chaff as bulking materials on temperature, pH, weight and volume reduction and salinity in aerobic composting of food wastes. Volume ratios of food wastes to chaff in reactor Control, Ch-1, Ch-2, Ch-3 and Ch-4 were 4:0, 4:1, 4:2, 4:3 and 4:4, respectively. Reactors were operated for 24 days with 1 hour stirring by 1 rpm and 2 hours aeration per day. The lowering of the volume ratio of food wastes to chaff resulted in the ascending of the highest reaction temperature and the elongation of the high temperature reaction period. The lowering of the volume ratio of food wastes to chaff resulted in the more fast time of pH ascending. The lowering of the volume ratio of food wastes to chaff resulted in the more fast consistency in the weight and volume reduction rates. Salinities were condensed by reaction days. The final salinity of Control was 2.79%, and the final range of salinities of chaff mixtures was 2.18 - 2.37%.

  • PDF

Effect of Chaff on Aerobic Composting of Food Wastes (왕겨가 음식물쓰레기의 호기성 퇴비화에 미치는 영향)

  • 박석환
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.2
    • /
    • pp.56-61
    • /
    • 2003
  • This study was performed to examine the effects of chaff as a bulking material on temperature, pH, weight and volume reduction and salinity in aerobic composting of food wastes. Volume ratios of food wastes to chaff in reactor of Control, Ch-1. Ch-2, Ch-3 and Ch-4 were 4:0, 4:1, 4:2, 4:3 and 4:4. respectively. Reactors were operated for 24 days with 1 hour stirring by 1 rpm and 2 hours aeration per day. The lowering of the volume ratio of food wasted to chaff resulted in the reaction at higher reaction temperature and the elongation of the high temperature reaction period. The lowering of the volume ratio of food wastes to chaff resulted in the more faster pH increase. The lowering of the volume ratio of food wastes to chaff resulted in the more faster reduction in the weight and the volume of wastes. Salinities were condensed by reaction days. The final salinity of Control and the final range of salinities of chaff mixtures were 2.79%, and 2.18~2.37%. respectively.

Effect of Phospho-gypsum on reduction of methane emission from rice paddy soil

  • Ali, Muhammad Aslam;Lee, Chang-Hoon;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.2
    • /
    • pp.131-140
    • /
    • 2007
  • Phospho-gypsum a primary waste by-product in phosphate fertilizer manufacturing industry and a potential source of electron acceptors, such as mainly of sulfate and a trace amount of iron and manganese oxides, was selected as soil amendment for reducing methane $(CH_4)$ emissions during rice cultivation. The selected amendment was added into potted soils at the rate of 0, 2, 10, and 20 Mg $ha^{-1}$ before rice transplanting. $CH_4$ flux from the potted soil with rice plant was measured along with soil Eh and floodwater pH during the rice cultivation period. $CH_4$ emission rates measured by closed chamber method decreased with increasing levels of phospho-gypsum application, but rice yield markedly increased up to 10 Mg $ha^{-1}$ of the amendment. At this amendment level, total $CH_4$ emissions were reduced by 24% along with 15% rice grain yield increment over the control. The decrease in total $CH_4$ emission may be attributed due to shifting of electron flow from methanogenesis to sulfate reduction under anaerobic soil conditions.

Capture and Reduction Technology of Greenhouse Gas Using Membrane from Anaerobic Digester Gas (분리막을 이용한 혐기성 소화가스로부터 온실가스 회수저감 기술)

  • Hwang, Cheol-Won;Jeong, Chang-Hun
    • Journal of Environmental Science International
    • /
    • v.20 no.10
    • /
    • pp.1233-1241
    • /
    • 2011
  • The main objective of this experimental investigation was $CH_4$ recovery from biogas generated in municipal and wastewater treatment plant. The polysulfone hollow fiber membrane was prepared in order to investigate the permeation properties of $CH_4$ and $CO_2$. Permeability of $CO_2$ in Polysulfone membrane was 11-fold higher than of $CH_4$ gas. A membrane pilot plant for upgrading biogas was constructed and operated at a municipal wastewater treatment plant. The raw biogas contained 66 ~ 68 Vol % $CH_4$, the balance being mainly $CO_2$. The effect of the operating pressure of feed and permeate side and feed flowrate on $CH_4$ recovery concentration and efficiency were investigated with double stage membrane pilot plant. The $CH_4$ concentration in the retentate stream was raised in these tests to 93 Vol % $CH_4$.

Changes in Crop Yield and $CH_4$ Emission from Rice Paddy Soils Applied with Biochar and Slow-release Fertilizer (논토양에서 바이오차르 투입 및 완효성비료 시용에 따른 메탄발생량과 작물생산량 변화)

  • Kim, Daegyun;Cho, Kwangrae;Won, Taejin;Bak, In-Tae;Yoo, Gayoung
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.4
    • /
    • pp.327-334
    • /
    • 2014
  • Emission reduction of $CH_4$ (methane gas) from rice paddy soil is a very important measure for climate change mitigation in agricultural sector. In this study, we investigated the changes in crop yield and $CH_4$ emissions in response to application of biochar and fertilizers. The experimental site is located in Hwasung, Kyunggido and experimental design is the split-plot method with three replicates. Treatments included rice straw (RS) and biochar (BC) amendments nested with the conventional NPK fertilizer (NPK) and slow release fertilizer (SRF). Control was also prepared with the soil with the conventional NPK fertilization with no amendment. Measurement of $CH_4$ emission was conducted during the growing season of 2014 using a dynamic chamber method. The results showed that application of rice straw increased daily $CH_4$ emission rate by 15%, while application of biochar reduced daily $CH_4$ emission rate by 38%. When we combined biochar application with slow release fertilizer, $CH_4$ emission was reduced by 45%. Further, the crop yield was also increased in all treatments compared with the control except for the treatment of rice straw application with slow release fertilizer. Overall results imply that biochar amendment to agricultural soil can be an effective strategy to decrease annual $CH_4$ emission with no reduction in crop yield.