• Title/Summary/Keyword: $CH_2Cl_2$

Search Result 730, Processing Time 0.025 seconds

A Study for Kinetics and Oxidation Reaction and Alcohols by (C4H4N2H)2Cr3O10 ((C4H4N2H)2Cr3O10에 의한 알코올들의 산화반응과 반응속도 연구)

  • Young-Cho Park;Jae-Ho Sim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.6
    • /
    • pp.781-788
    • /
    • 2024
  • (C4H4N2H)2Cr3O10 has been prepared by the reaction of C4H4N2 with CrO3 in water. (C4H4N2H)2Cr3O10 was identified by elemental analysis, IR, UV-Vis and TG-DTA-TMA system. The oxidation of benzyl alcohol by (C4H4N2H)2Cr3O10 in organic solvents showed that the reactivity increased with the increase of the dielectric constant. The oxidation of alcohols was examined by (C4H4N2H)2Cr3O10 in CH2Cl2. As a resuit, (C4H4N2H)2Cr3O10 was found as efficient oxidizing agent that converted benzylic alcohol, allylic alcohol, saturated primary alcohol, secondary alcohols to the corresponding aldehydes or ketones(70%~96%). The selective oxidation of alcohols was also examined by (C4H4N2H)2Cr3O10 in CH2Cl2. (C4H4N2H)2Cr3O10 was selective oxidizing agent(10%~96%) of benzylic alcohol, allylic alcohol, saturated primary alcohols in the presence of secondary ones. In the presence of DMF. solvent with acidic catalyst such as HCl. (C4H4N2H)2Cr3O10 oxidized benzyl alcohol and its derivatives. The Hammett reaction constant was -0.70(303K). The observed experimental data were used to rationalize the hydride ion transfer in the rate determining step.

Isolation of Phenolic Glucosides from the Stems of Acer tegmentosum Max (산겨릅나무 줄기에서 페놀성 글루코사이드의 분리)

  • Hur, Jong-Moon;Yang, Eun-Ju;Choi, Sun-Ha;Song, Kyung-Sik
    • Applied Biological Chemistry
    • /
    • v.49 no.2
    • /
    • pp.149-152
    • /
    • 2006
  • The chemical constituents of Acer tegmentosum Max which belongs to Aceraceae has never been reported. The stems of A. tegmentosum were extracted with MeOH and then successively partitioned with $CH_2Cl_2$, n-BuOH, and $H_2O$ in order to investigate the major phytochemicals. Two compounds were isolated from the n-BuOH fraction through silica gel and RP-18 column chromatographies. Their chemical structures were elucidated as methyl gallate $4-O-{\beta}-D-glucoside$ and salidroside by comparing their spectral data with those in the literature.

Synthesis of Novel Electrochemiluminescent Polyamine Dendrimers Functionalized with Polypyridyl Ru(II) Complexes and Their Electrochemical Properties

  • Lee, Do-Nam;Park, Hee-Sang;Kim, Eun-Hwa;Jun, Young-Moo;Lee, Ja-Young;Lee, Won-Yong;Kim, Byeong-Hyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.99-105
    • /
    • 2006
  • Polyamine dendrimers functionalized with electrochemiluminescent (ECL) polypyridyl Ru(II) complexes, dend-$[CO-(CH_2)_3-mbpy{\cdot}Ru(L)_2]_3(PF_6)_6$ (dend: N$(CH_2CH_2NH)_3$-, L: bpy, o-phen, phen-Cl, DTDP), were synthesized through the complexation of dendritic polypyridyl ligands to Ru(II) complexes. Their electrochemical redox potentials, photoluminescence (PL), and relative ECL intensities were studied. The ECL emissions produced by the reaction between the electro-oxidized $Ru^{3+}$ species of polyamine dendrimers and tripropylamine as a coreactant were measured in a static system with potential cycles between 0.8 and 1.3 V or through flow injection analysis with a potential of +1.3 V, and were compared to that of $[Ru(o-phen)_3](PF_6)_2{\cdot}Dend-[CO-(CH_2)_3-mbpy{\cdot}Ru(bpy)_2]_3(PF_6)_6$ showed an ECL intensity that was two-fold greater than that of the reference complex $[Ru(o-phen)_3](PF_6)_2$.

Numerical Simulations of the Pyrolysis of 1,2 Dichloroethane (1,2 Dichloroethane의 열분해에 대한 수치해석)

  • Lee, Ki-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.697-702
    • /
    • 2001
  • Numerical simulations of 1,2 dichloroethane(EDC) pyrolysis are conducted to understand the process on the production of the vinyl chloride monomer(VCM) and by-products. A chemical kinetic mechanism is developed, the adopted scheme involving 44 gas-phase species and 260 elementary forward and backward reactions. Detailed sensitivity analyses and the rates of production analysis are performed on each of the reactions and the various species, respectively. The concentrations of EDC, VCM, and HCI predicted by this mechanism are in good agreement with those deduced from experiments of commercial and laboratory scale. The mechanism is found to accurately predict the VCM yield and the production of by-products by varying the ranges of pyrolysis temperature, residence time, and pressure which impact on the pyrolysis of 1,2 dichloroethane. The influence of reactions related to H atom on the relative sensitivity of EDC becomes important as the residence time increases. The pyrolysis of EDC mainly occurs through $C_{2}H_{4}Cl_{2}+Cl=CH_{2}ClCHCl$.

  • PDF

Electrochemical Polymerization of Ruthenium(II) Complex and Application to Acetaminophen Analysis

  • Kannan, Sethuraman;Son, Jung-Ik;Yang, Jee-Eun;Shim, Yoon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1341-1345
    • /
    • 2011
  • A novel ruthenium(II) complex, [$RuCl_2(DMSO)_2$(PhenTPy)] has been synthesized by the condensation of $RuCl_2(DMSO)_4$ with (1-(1,10-phenanthrolinyl)-2,5-di(2-thienyl)-1H-pyrrole)[PhenTPy] in $CHCl_3$ solution. The [$RuCl_2(DMSO)_2$(PhenTPy)] complex modified electrode was fabricated through the electropolymerization of the monomer in a 0.1 M tetrabutylammonium perchlorate (TBAP)/$CH_2Cl_2$ solution, to take advantage of the electronic communication between metal ion center by the conjugated backbone. The UV-visible spectroscopy (UV), mass spectrometry (MS), and cyclic voltammetry (CV) were employed to characterize the [$RuCl_2(DMSO)_2$(PhenTPy)] complex and its polymer (poly-Ru(II)Phen complex). The poly-Ru(II)Phen complex modified electrode exhibited an electrocatalytic activity to the oxidation of acetaminophen and the catalytic property was used for the analysis of acetaminophen at the concentration range between 0.09 and 0.01 mM in a phosphate buffer solution (pH 7.0).

Chemical Components from the Stem Barks of Kalopanax septemlobus (음나무 수피의 화학적 성분)

  • Hong, Sung-Su;Han, Doo-Il;Hwang, Bang-Yeon;Choi, Woo-Hoi;Kang, Ho-Sang;Lee, Myung-Koo;Lee, Don-Koo;Lee, Kyong-Soon;Ro, Jai-Seup
    • Korean Journal of Pharmacognosy
    • /
    • v.32 no.4 s.127
    • /
    • pp.302-306
    • /
    • 2001
  • The stem barks of Kalopanax septemlobus were extracted with MeOH, and successively partitioned with $CH_2Cl_2$, EtOAc, BuOH and water. Repeated column chromatographic separation of the $CH_2Cl_2$ fraction resulted in the isolation of four compounds. Their structures were identified as ${\beta}-sitosterol$ (1), oleanolic acid (2), 3,3'-bis(3,4-dihydro-4-hydroxy-6-methoxy-2H-1-benzopyran) (3) and (-)-balanophonin (4). This is the first report on the isolation of 3,3'-bis(3,4-dihydro-4-hydroxy-6-methoxy-2H-1-benzopyran) (3) and (-)-balanophonin (4) from Kalopanax spp.

  • PDF

Chemical Composition and Seasonal Variation of Acid Deposition in Chiang Mai, Thailand

  • Sillapapiromsuk, S.;Chantara, S.
    • Environmental Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.93-98
    • /
    • 2010
  • This study aims to determine the chemical composition and seasonal variation of atmospheric acid deposition in order to identify possible sources contributing to precipitation. Sampling and analysis of 132 wet deposition samples were carried out from January to December 2008 at Mae Hia Research Center, Chiang Mai University, Chiang Mai Province. Total precipitation was 1,286.7 mm. Mean electro-conductivity and pH values were 0.94 mS/m and 6.27, respectively. Major cations ($Na^+$, ${NH_4}^+$, $K^+$, $Ca^{2+}$, and $Mg^{2+}$) and major anions ($HCOO^-$, $CH_3COO^-$, $Cl^-$, ${NO_3}^-$, and ${SO_4}^{2-}$) were determined by Ion Chromatography. The relative volume weight mean concentrations of anions, in descending order, were ${SO_4}^{2-}$ > ${NO_3}^-$ > $Cl^-$ > $CH_3COO^-$ > $HCOO^-$ and those of cations were $NH_4^+$ > $Ca^{2+}$ > $Mg^{2+}$ > $K^{+}$ > $Na^+$. Results of a principle component analysis highlighted the influence of various possible sources of ions such as agricultural activity, fuel combustion, marine sources, soil resuspension, and biomass burning.

Gas and Solute Compositions of Fluid Inclusions in Quartz from Some Base-metal ore Deposits, South Korea (남한의 주용 금속광상산 석영내의 유체포유물의 가스성분과 용존성분의 화학조성)

  • Kim, Gyu-Han;Jeong, Hae-Ran
    • Economic and Environmental Geology
    • /
    • v.32 no.5
    • /
    • pp.421-434
    • /
    • 1999
  • Gas and chemical compositions of fluid inclusions in quartz some of Au-Ag, Pb-Zn-Cu and W-Mo mineral deposits in South Kores were analyzed to interpret the sources of ore fluid and the depositional condition of ore minerals in base-metal ore deposits. Fluid inclusions in quartz from the gold and silver mines are characterized by $CO_2$ rich fluids which have a wide range in $CH_4 \;and\; CO_2$ contents ($CH_4/CO_2$=0.001-0.225). The $CO_2$ rich but $CH_4$-poor nature of the fluid reflects the high fo2 condition during the mineral precipitation. The C2H6 is detected in hydrothermal quartz vines in metasedimentary rocks from the Jeonjoo-il, Youngbokari and Taechang mines. The $CH_4 /CO_2$ rations in W-Mo bearing quartz veins range from 0.005 to 0.214, which is similar with those in Au-Ag mines. However, skarn formation stage. Fluid inclusions, A relatively good correlation between Na and Cl contentrations reflects varible salinity in the fluid inclusion, it is suggested that the chemistry of promary magmatic hydrothermal fluids has changed during post-magmatic alteration and/or wall rock alteration processes. The content of gas compositions also depends on the kinds of country rocks, supporting above conclusion.

  • PDF

첨가제가 이산화염소 표백에 미치는 영향

  • 윤병호;왕립군;김세종;김용식;최경화
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04a
    • /
    • pp.84-88
    • /
    • 1999
  • In chlorine dioxide delignigication or bleaching, chlorate is mainly formed by the reaction between chlorite and hypochlorous acid, thus scavengers of chlorine or hypochlorous acid can be used to reduce the formation of chlorate which is unfavorable to environment. In this study, additives such as sulfamic acid, DMSO, hydrogen peroxide, or sodium chlorite was added to chlorine solution or pure $ClO_2$ solution to check their reactivity with $Cl_2$ and $ClO_2$. These additives were also added directly into general $ClO_2$ solution which contained certain amount of chlorine, then the additive-treated $ClO_2$ solution were used in bleaching stages. The aim of this procedure was to remove the original amount of chlorine that was thought to be possibly the main reason for the formation of chlorate and AOX. The additives were found to be able to eliminate chlorine very fast and selectively, but $H_2$ $O_2$ should be used under pH4, otherwise it also reacts with $ClO_2$. After the additives reacted With $Cl_2$, DMSO turned into an inactive product $(CH_3)_2SO_2$, While Sulfamic acid turned into $HClSO_3H$ that still remained active in oxidation, and $NaClO_2$ produced $ClO_2$. The addition of $HNaClO_2$ showed significant improvement in delignification but the deeper delignification led to higher formation of chlorate. When the additive-treated chlorine dioxide solutions were used in bleaching, both sulfamic acid, DMSO, and hydrogen peroxide showed no significant changes of DE brightness and Kappa number. The formation of chlorate was reduced by addition of sulfamic acid, DMSO and hydrogen peroxide.

  • PDF

Multiresidual Pesticide Analysis in Crude Drug -Gas Chromatographic Analysis of 16 Controlled Pesticides- (생약 중 잔류농약의 분석(I) - GC에 의한 16종의 잔류 규제 농약의 분석 -)

  • 박만기;박정일;윤혜란;이은정;이수연;노일협
    • YAKHAK HOEJI
    • /
    • v.37 no.1
    • /
    • pp.54-65
    • /
    • 1993
  • A method for the determination of 16 residual pesticides in crude deugs was examined. Crude drug was extracted with acetonitrile/water solution and the extract was partitioned between hexane/CH$_{2}$Cl$_{2}$ and NaCl saturated water. The organic layer was passed through cleanup column and subjected to the GC/ECD or GC/NPD analysis. Essential oil components in crude drug interfere with the analysis, and sulfuric acid treatment was adapted to overcome this interference.

  • PDF