• Title/Summary/Keyword: $CH{_3}^+$

Search Result 3,681, Processing Time 0.026 seconds

The Addition Effect of on Methane Ignition behind Reflected Shock Waves

  • Ji, Seong Bae;Kim, Gil Yeong;Sin, Gwan Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.957-958
    • /
    • 2000
  • The addition effect of $CH^3Br$ on the ignition of methane was investigated in the temperature range of 1537-1920 K behind reflected shock waves. The ignition delay times were measured by the sudden increase of pres-sure and OH emission in the $CH_4-O_2-Ar$ system containing small amount of $CH_3Br.$ The delay times of mix-tures with $CH_3Br$ were shorter than those without $CH_3Br.$ The promotion of ignition by $CH_3Br$ was caused by the relative fast decomposition rate in additive. To clarify the addition effect of $CH_3Br$ from the viewpoint of the reaction mechanism, computational analyses were performed in $CH_4-CH_3Br-O_2-Ar$ mixtures.

Thermal Product Distribution of Chlorinated Hydrocarbons with Pyrolytic Reaction Conditions (열분해 반응조건에 따른 염화탄화수소 생성물 분포 특성)

  • Kim, Yong-Je;Won, Yang-Soo
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.198-205
    • /
    • 2010
  • Two sets of thermal reaction experiment for chlorinated hydrocarbons were performed using an isothermal tubular-flow reactor in order to investigate thermal decomposition, including product distribution of chlorinated hydrocarbons. The effects of $H_2$ or Ar as the reaction atmosphere on the thermal decomposition and product distribution for dichloromethane($CH_2Cl_2$) was examined. The experimental results showed that higher conversion of $CH_2Cl_2$ was obtained under $H_2$ atmosphere than under Ar atmosphere. This phenomenon indicates that reactive-gas $H_2$ reaction atmosphere was found to accelerate $CH_2Cl_2$ decomposition. The $H_2$ plays a key role in acceleration of $CH_2Cl_2$ decomposition and formation of dechlorinated light hydrocarbons, while reducing PAH and soot formation through hydrodechlorination process. It was also observed that $CH_3Cl,\;CH_4,\;C_2H_6,\;C_2H_4$ and HCl in $CH_2Cl_2/H_2$ reaction system were the major products with some minor products including chloroethylenes. The $CH_2Cl_2$/Ar reaction system gives poor carbon material balance above reaction temperature of $750^{\circ}C$. Chloroethylenes and soot were found to be the major products and small amounts of $CH_3Cl$ and $C_2H_2$ were formed above $750^{\circ}C$ in $CH_2Cl_2$/Ar. The thermal decomposition reactions of chloroform($CHCl_3$) with argon reaction atmosphere in the absence or the presence of $CH_4$ were carried out using the same tubular flow reactor. The slower $CH_3Cl$ decay occurred when $CH_4$ was added to $CH_3Cl$/Ar reaction system. This is because :$CCl_2$ diradicals that had been produced from $CHCl_3$ unimolecular dissociation reacted with $CH_4$. It appears that the added $CH_4$ worked as the :$CCl_2$ scavenger in the $CHCl_3$ decomposition process. The product distributions for $CHCl_3$ pyrolysis under argon bath gas were distinctly different for the two cases: one with $CH_4$ and the other without $CH_4$. The important pyrolytic reaction pathways to describe the important features of reagent decay and intermediate product distributions, based upon thermochemistry and kinetic principles, were proposed in this study.

Cationic Iridium(I) Complex of Ethyl Cinnamate and Hydrogenation of Unsaturated Esters with Iridium(I)-Perchlorato Complex

  • Yang, Kyung-Joon;Chin, Chong-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.6
    • /
    • pp.466-468
    • /
    • 1986
  • Reaction of $Ir(ClO_4)(CO)(PPh_3)_2$ with trans-$C_6H_5CH$ = $CHCO_2C_2H_5$ produces a new cationic iridium(I) complex, [Ir (trans-$C_6H_5CH$ = $CHCO_2C_2H_5)(CO)(PPh_3)_2]ClO_4$ where trans-$C_6H_5CH$ = $CHCO_2C_2H_5$ seems to be coordinated through the carbonyl oxygen rather than through the $\pi$-system of the olefinic group according to the spectral data. It has been found that Ir$(ClO_4)(CO)(PPh_3)_2$ catalyzes the hydrogenation of $CH_2$ = $CHCO_2C_2H_5$, trans-$CH_3CH$ = $CHCO_2C_2H_5$ and trans-$C_6H_5CH$ = $CHCO_2C_2H_5$ to $CH_3CH_2CO_2C_2H_5$, $CH_3CH_2CH_2CO_2C_2H_5$ and $C_6H_5CH_2CH_2CO_2C_2H_5$, respectively at room temperature under the atmospheric pressure of hydrogen. The relative rates of the hydrogenation of the unsaturated esters are mostly understood in terms of steric reasons.

Nucleophilic Substitutions at a Carbonyl Carbon Atom (ⅩⅡ). Solvolysis of Methylchloroformate and Its Thioanalogues in $CH_3CN-H_2O$ and $CH_3COCH_3-H_2$ Mixtures (카르보닐탄소원자의 친핵성 치환반응 (제 12 보).아세토니트릴-물 및 아세톤-물 혼합용 매속에서 메틸클로로훠메이트와 그 티오유도체들의 가용매분해반응에 관한 연구)

  • Sangmoo La;Kyeong Shin Koh;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.8-14
    • /
    • 1980
  • Solvolysis rate constants for methylchloroformate, $CH_3O$(CO)Cl, methylthiono-chloroformate, $CH_3O$(CS)Cl, and methylthiolchloroformate, $CH_3S$(CO)Cl, have been determined conductometrically in acetone-water and acetonitrile-water mixtures, and activation parameters, ${\Delta}H^{\neq}$ and ${\Delta}S^{\neq}$, have been derived. Results show that in water-rich regions the order of rate increases as $$CH_3O(CO)Cl while in dipolar aprotic solvent-rich region this order reverses. The plots of log k vs. solvent parameters, Y, $\frac{D-1}{2D+1}$ and log($H_2$) show that the order of rate increase in water-rich region is the results of increase in $S_N1$ character. It is concluded that $CH_3S$(CO)Cl solvolyzes via $S_N1$ mechanism whereas $CH_3O$(CO)Cl reacts via $S_N2$ and $CH_3O$(CS)Cl via intermediate mechanism in water-rich region.

  • PDF

Monte Carlo Simulation for Vapor-Liquid Equilibrium of Binary Mixtures CO2/CH3OHCO2/C2 H5OH, and CO2/CH3CH2CH2OH

  • Moon, Sung-Doo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.811-817
    • /
    • 2002
  • Gibbs ensemble Monte Carlo simulations were performed to calculate the vapor-liquid coexistence properties for the binary mixtures $CO_2/CH_3OH$, $CO_2/C_2H_5OH$, and $CO_2/CH_3CH_2CH_2OH.$ The configurational bias Monte Carlo method was used in the simulation of alcohol. Density of the mixture, composition of the mixture, the pressure-composition diagram, and the radial distribution function were calculated at vapor-liquid equilibrium. The composition and the density of both vapor and liquid from simulation agree considerably well with the experimental values over a wide range of pressures. The radial distribution functions in the liquid mixtures show that $CO_2$ molecules interact more stogly with methyl group than methylene group of $C_2H_5OH$ and $CH_3CH_2CH_2OH$ due to the steric effects of the alcohol molecules.

Effect of the Particle Size of SnO2:Ni on Gas Sensing Properties (입자크기에 따른 SnO2:Ni 가스센서의 감응 특성)

  • Lee, Ji-Young;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.207-211
    • /
    • 2011
  • Ni 8 wt.%-doped tin oxide ($SnO_2$) thick films were fabricated into gas sensors by the method of screen printing onto alumina substrates. The particle size of $SnO_2$ was controlled by changing the ball-mill time between 0~120 h. The structural and morphological properties of these thick films were investigated using X-ray diffraction and scanning electron microscopy. The structural properties of $SnO_2$ powders showed a tetragonal phase with (110) dominant orientation. The particle size of the $SnO_2$:Ni powders after ball-mill of 120 h was about 0.05 ${\mu}m$. The gas sensitivity (S = Rg/Ra) to 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas was measured at room temperature by comparing the resistance in air (Ra) with that of the target gases (Rg). The sensitivity of the $SnO_2$ gas sensors was enhanced by increasing the ball-mill time. There was an association between the sensitivity of both the $CH_4$ gas and the $CH_3CH_2CH_3$ gas and the particle size of the $SnO_2$. $SnO_2$ gas sensors prepared by 72 h ball-mill showed a sensitivity of about 13 to 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas. The response time of the $SnO_2$:Ni gas sensors to the $CH_4$ gas was about 20 seconds.

Gas Sensing Characteristics of Nano Sized SnO2 Sensors for Various Co and Ni Concentration (Co, Ni 농도 변화에 따른 나노 SnO2 센서의 감응 특성)

  • Lee, Ji-Young;Yu, Yoon-Sic;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.546-549
    • /
    • 2011
  • Nano-sized $SnO_2$ thick films were prepared by a screen-printing method onto $Al_2O_3$ substrates. The sensing characteristics were investigated by measuring the electrical resistance of each sensor in a test box as a function of the detection gas. The nano-sized $SnO_2$ thick film sensors were treated in a $N_2$ atmosphere. The structural properties of the nano $SnO_2$with a rutile structure according to XRD showed a (110) dominant $SnO_2$ peak. The particle size of $SnO_2$:Ni nano powders at Ni 8 wt% was about 45 nm, and the $SnO_2$ particles were found to contain many pores according to the SEM analysis. The sensitivity of the nano $SnO_2$-based sensors was measured for 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature by comparing the resistance in air with that in the target gases. The results showed that the best sensitivity of $SnO_2$:Ni and $SnO_2$:Co sensors for $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature was observed in $SnO_2$:Ni sensors doped with 8 wt% Ni. The response time of the $SnO_2$:Ni gas sensors was 10 seconds and recovery time was 15 seconds for the $CH_4$ and $CH_3CH_2CH_3$ gases.

Nucleophilic Displacement at a Carbonyl Carbon Atom (ⅩⅢ). Methanolysis of Thiochloroformate in $CH_3OH-CH_3CN$ Mixtures (카르보닐탄소원자의 친핵성 치환반응 (제13보). 메탄올-아세토니트릴 혼합용매에서 Thiochloroformate의 가메탄올 분해반응)

  • Sangmoo La;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.288-294
    • /
    • 1980
  • Methanolysis rate constants were determined for $CH_3O(CO)Cl,\;CH_3S(CO)Cl\;and\;CH_3S(CS)Cl\;in\;CH_3OH-CH_3CN$ mixtures. Results show that the rates are not predominantly influenced by the bulk solvent properties but are partly influenced by specific electrophilic solvation.Polarity of the solvent is not a dominant factor but it nevertheless plays a role in charge stabilization of the $S_N1$ like transition state. The methanolysis proceeds through $S_N1$ mechanism for $CH_3S(CS)Cl$ for which both specific solvation of leaving group by methanol and charge stabilization by a high dielectric medium are important, while for $CH_3O(CO)Cl\;methanolysis occurs\;via\;S_N2$ mechanism in which both of the solvent effects are unimportant.

  • PDF

Response Characteristics of Thick Film Sensors Using Nano ZnO:Ni for Hydrocarbon Gas (나노 ZnO:Ni를 이용한 후막 가스센서의 탄화수소계 가스에 대한 감응특성)

  • Yoon, So-Jin;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.211-214
    • /
    • 2013
  • The effects of a Ni coating on the sensing properties of nano ZnO:Ni based gas sensors were studied for $CH_4$ and $CH_3CH_2CH_3$ gases. Nano ZnO sensing materials were prepared by the hydrothermal reaction method. The Ni coatings on the nano ZnO surface were deposited by the hydrolysis of zinc chloride with $NH_4OH$. The weight % of Ni coating on the ZnO surface ranged from 0 to 10 %. The nano ZnO:Ni gas sensors were fabricated by a screen printing method on alumina substrates. The structural and morphological properties of the nano ZnO : Ni sensing materials were investigated by XRD, EDS, and SEM. The XRD patterns showed that nano ZnO : Ni powders with a wurtzite structure were grown with (1 0 0), (0 0 2), and (1 0 1) dominant peaks. The particle size of nano ZnO powders was about 250 nm. The sensitivity of nano ZnO:Ni based sensors for 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas was measured at room temperature by comparing the resistance in air with that in target gases. The highest sensitivity of the ZnO:Ni sensor to $CH_4$ gas and $CH_3CH_2CH_3$ gas was observed at Ni 4 wt%. The response and recovery times of 4 wt% Ni coated ZnO:Ni gas sensors were 14 s and 15 s, respectively.

Characteristics and Preparation of Gas Sensor Using Nano-ZnO Powders (나노 ZnO 분말을 이용한 가스센서 제작 및 특성연구)

  • Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.25 no.6
    • /
    • pp.300-304
    • /
    • 2015
  • Nanorod ZnO and spherical nano ZnO for gas sensors were prepared by hydrothermal reaction method and hydrazine method, respectively. The nano-ZnO gas sensors were fabricated by a screen printing method on alumina substrates. The gas sensing properties were investigated for hydrocarbon gas. The effects of Co concentration on the structural and morphological properties of the nano ZnO:Co were investigated by X-ray diffraction and scanning electron microscope (SEM), respectively. XRD patterns revealed that nanorod and spherical ZnO:Co with a wurtzite structure were grown with (100), (002), (101) peaks. The sensitivity of nanorod and spherical ZnO:Co sensors was measured for 5 ppm $CH_4$ and $CH_3CH_2CH_3$ gas at room temperature by comparing the resistance in air with that in target gases. The highest sensitivity to the $CH_4$ and $CH_3CH_2CH_3$ gas of spherical nano ZnO:Co sensors was observed at Co 6 wt%. The spherical nano ZnO:Co sensor exhibited a higher sensitivity to hydrocarbon gas than nanorod ZnO.