• 제목/요약/키워드: $C^3_2$-construction

검색결과 903건 처리시간 0.026초

C32-CONSTRUCTION ON Mn(κ)

  • Song, Youngkwon
    • Korean Journal of Mathematics
    • /
    • 제12권1호
    • /
    • pp.23-32
    • /
    • 2004
  • Let (B, $m_B$, ${\kappa}$) be a maximal commutative ${\kappa}$-subalgebra of a matrix algebra $M_n(\kappa)$. We will construct a maximal commutative ${\kappa}$-subalgebra (R, $m$, ${\kappa}$) of $M_n+3(\kappa)$ from the algebra B such that the algebra R has dimension greater than the dimension of B by 3. Moreover, we will show a $C_i$-construction doesn't imply a $C^3_2$-construction for $i=1,2$.

  • PDF

Life cycle assessment (LCA) of roof-waterproofing systems for reinforced concrete building

  • Ji, Sukwon;Kyung, Daeseung;Lee, Woojin
    • Advances in environmental research
    • /
    • 제3권4호
    • /
    • pp.367-377
    • /
    • 2014
  • In this study, we investigated a life cycle assessment (LCA) of six roof-waterproofing systems [asphalt (C1), synthetic polymer-based sheet (C2), improved asphalt (C3), liquid applied membrane (C4), Metal sheet with asphalt sheet (N1), and liquid applied membrane with asphalt sheet (N2)]for reinforced concrete building using an architectural model. To acquire accurate and realistic LCA results, minimum units of material compositions for life cycle inventory and real data for compositions of waterproofing materials were used. Considering only materials and energy demands for waterproofing systems per square meter, higher greenhouse gas (GHG) emissions could be generated in the order of C1 > N2 > C4 > N1 > C2 > C3 during construction phase. However, the order was changed to C1 > C4 > C3 > N2 > N1 > C2, when the actual architecture model was applied to the roof based on each specifications. When an entire life cycle including construction, maintenance, and deconstruction were considered, the amount of GHG emission was in the order of C4 > C1 > C3 > N2 > C2 > N1. Consequently, N1 was the most environmental-friendly waterproofing system producing the lowest GHG emission. GHG emissions from maintenance phase accounted for 71.4%~78.3% among whole life cycle.

CFD 시뮬레이션을 이용한 건축물 및 녹지배치가 외부 열환경에 미치는 영향 예측 (Prediction of Effect on Outside Thermal Environment of Building and Green Space Arrangement by Computational Fluid Dynamic)

  • 김정호;손원득;윤용한
    • 한국환경과학회지
    • /
    • 제21권1호
    • /
    • pp.69-81
    • /
    • 2012
  • This study forecasts changes in thermal environment and microclimate change per new building construction and assignment of green space in urban area using Computational Fluid Dynamics(CFD) simulation. The analysis studies temperature, humidity and wind speed changes in 4 different given conditions that each reflects; 1) new building construction; 2) no new building construction; 3) green spaces; and 4) no green spaces. Daily average wind speed change is studied to be; Case 2(2.3 m/s) > Case 3. The result of daily average temperate change are; Case 3($26.5^{\circ}C$) > Case 4($24.6^{\circ}C$) > Case 2($23.9^{\circ}C$). This result depicts average of $2.5^{\circ}C$ temperature rise post new building construction, and decrease of approximately $1.8^{\circ}C$ when green space is provided. Daily average absolute humidity change is analysed to be; Case 3(15.8 g/kg') > Case 4(14.1 g/kg') > Case 2(13.5 g/kg'). This also reveals that when no green spaces is provided, 2.3 g/kg' of humidity change occurs, and when green space is provided, 0.6 g/kg change occurnd 4(1.8 m/s), which leads to a conclusion that daily average wind velocity is reduced by 0.5 m/s per new building construction in a building complex.

실험실 조건에서 붕어마름의 수질개선 효과 분석 - 영양염류 제거 효율을 중심으로 (Analysis of Water Quality Improvement of Ceratophyllum demersum under Laboratory Condition - by Nutrients Removal Efficiency)

  • 안창혁;주진철;주원정;안호상;이새로미;오주현;송호면
    • 대한환경공학회지
    • /
    • 제35권4호
    • /
    • pp.283-288
    • /
    • 2013
  • 침수식물인 Ceratophyllum demersum (C. demersum)의 영양염류 제거 효율과 남조류 성장 억제 능력을 평가하기 위해 총 6개의 반응조에서 9일간 회분식 실험을 실시하였다. 실험이 시작되고 약 84 hr 후 C. demersum는 pH, DO에 대한 안정적인 일주기 경향을 보였다. 영양염류인 $NH_3{^+}$, $NO_3{^-}$, $PO{_4}^{3-}$를 대상으로 저감률을 검토한 결과 실험초기부터 9일간 지속적인 감소를 보였고 특히 24 hr 이내에서 빠른 감소를 나타내었다. C. demersum의 단위면적당 생체량과 영양염류 제거율 사이에 높은 상관관계($r^2{\geq}0.96$, p<0.001)가 도출되었으며, 피복도가 높을수록 오염물 저감 효율이 큰 것으로 나타났다. 하지만 높은 밀도의 반응조에서는 C. demersum의 활성화 차이가 있었으며, 그럼에도 불구하고 수질정화 효과가 나타난 것은 침수식물에 존재하는 부착조류나 미생물의 영향이 큰 것으로 여겨진다. Microcystis aeruginosa (M. aeruginosa)는 C. demersum의 생장밀도 2,500 g $fw/m^2$ (피복도 100%) 조건에서 성장률 0.31 /day를 보였으나 대조구는 0.47 /day을 나타내었다. 세포수 비교에서는 실험구보다 대조구가 약 1.7배 높게 나타나 C. demersum의 남조류 성장 억제 능력을 시사하였다.

An Experimental Study of Water Vapor Pressure Change by Ambient Temperature at the Interface between Concrete and Fluid-Applied Membrane Layer

  • Ko, Jin-Soo;Kim, Byung-Yun;Park, Sung-Woo;Lee, Mun-Hwan;Lee, Sung-Bok
    • International Journal of Concrete Structures and Materials
    • /
    • 제3권1호
    • /
    • pp.15-23
    • /
    • 2009
  • Over about 30% of problems in construction is related to water-leaking, and the loss from this problem can incur as much as three times the cost of initial construction. Thus, water vapor pressure is known to be the primary cause of defective waterproofing. Accordingly, the theories on the relationship between water pressure and temperature as well as damp-proofing volume of concrete and the change in vapor pressure volume were reviewed and analyzed in this study by making test samples after spraying a dampness remover and applying waterproofing materials to the prepared test specimens. The result of measuring water vapor pressure with the surface temperature of the waterproofing (fluid-applied membrane) layer at the experimental temperature setting of about $10^{\circ}C$, which is the annual average temperature of Seoul, indicated that (1) the temperature of the fluid-applied membrane elevated to about $40^{\circ}C$, and the water vapor pressure generated from the fluid-applied membrane was about 0.03 N/mm 2 when the surface temperature of the waterproofing layer was raised to about $80^{\circ}C$. (2) when the temperature of the fluid-applied membrane of the waterproofing layer was raised from $30^{\circ}C$ to $35^{\circ}C$, water vapor pressure of about 0.01 N/mm 2 was generated, and (3) when a thermal source was applied to the fluid-applied membrane (waterproofing) layer, the temperature increased from $35^{\circ}C$ to $40^{\circ}C$, and approximately $0.005\;N/mm^2$ of water vapor pressure was generated.

TAP을 적용한 내단열과 외단열구조의 열성능 평가에 관한 연구 (A Study on Thermal Performance Evaluation with TAP (Thermosyphoning Air Panel) in Inside and Outside Insulated Constructions)

  • 이경회;유호천;홍영우;전채휘
    • 태양에너지
    • /
    • 제7권1호
    • /
    • pp.23-29
    • /
    • 1987
  • TAP system, a kind of natural convective space heating collector, has a good heat loss by night. The aim of this paper is to induce and to study an hourly heat flow theory by response factors analysis with TAP in inside and outside insulated construction, to compare and evaluate on thermal performance an hourly natural temperature, heated room temperature and heating load in aboved-mention constructions with computer simulation. The results of the study can be summarized as follows. According that there is no TAP and with TAP, it is inside insulated construction and outside insulated construction, daily natural range of temperature each shows $12.5^{\circ}C$ and $16.7^{\circ}C$, $2.7^{\circ}C$ and $3.7^{\circ}C$, daily heated range of temperature with noramal control heating system each shows $6.6^{\circ}C$ and $12.1^{\circ}C$, $1.7^{\circ}C$ and $3.1^{\circ}C$, heating hours each show 10 hr and 7 hr, 9 hr and 4 hr and heating energy saving percentage in january 123% and 79%, 100% and 40%. Therefore, energy saving percentage shows that outside insulated construction saves about 54% in comparision with inside insulated construction.

  • PDF

원자짝 분포함수를 이용한 순수 C3S 경화체의 고온 노출 시 나노 구조에 관한 연구 (Analysis of Nano Structure of Pure C3S Paste Subjected to High Tempurature using Atomic Pair Distribution Function)

  • 지현석;서형원;박태훈;배성철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.170-171
    • /
    • 2019
  • When the cement paste in concrete is exposed to high temperatures, the mechanical performance decreases due to a series of reactions inside the cement. In this study, we investigated the change of nanostructure of $C_3S$ when $C_3S$ was exposed to high temperature using pair distribution function (PDF) based on high energy X-ray scattering. As a result of X-ray diffraction, there was no significant difference when $C_3S$ was heated at $300^{\circ}C$, but most of $Ca(OH)_2$ was decomposed into CaO at $500^{\circ}C$. In addition, it was confirmed that CaO is dominant in the nanostructure when $C_3S$ is heated to $500^{\circ}C$.

  • PDF

플라이애쉬 다량 치환 콘크리트 현장 적용 (The Application of High Volume Fly-Ash Concrete on Construction Site)

  • 박찬규;이희근;이승훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.271-272
    • /
    • 2009
  • 본 연구에서는 플라이애쉬가 다량 치환된 콘크리트를 현장 적용한 결과에 대하여 보고하고자 한다. 대상 구조물은 설계강도 40MPa인 두께 3m, 2m의 기초이며, 플라이애쉬 치환량은 50%로서 프리믹스 형태의 결합재를 사용하였다. 적용결과로서, 두께 3m 인 기초에서는 약 $39^{\circ}$C, 두께 2m 인 기초에서는 $34^{\circ}$C 의 온도 상승량을 나타내었다.

  • PDF