• Title/Summary/Keyword: $Bi_2Sr_2Ca_{n-1}Cu_nO_x$(n=0, 1, 2)Superconducting Thin Films

Search Result 4, Processing Time 0.02 seconds

Comparison between Superconducting Thin Films Fabricated by Using the Sputtering and the Evaporation Method (스퍼터링 법과 증발 법으로 제작한 초전도 박막의 비교)

  • Cheon, Min-Woo;Park, No-Bong;Yang, Sung-Ho;Park, Yong-Pil;Kim, Hye-Jeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.39-42
    • /
    • 2004
  • The $Bi_2Sr_2Ca_nCu_{n+1}O_x$ superconducting thin film fabricated by using the sputtering method was compared with the $Bi_2Sr_2Ca_nCu_{n+1}O_x$ superconducting thin film fabricated by using the evaporation method. In doing the ultra-low deposition because each element can exist on the substrate surface, both the sputtering method and the evaporation method could easily fabricate single phase of the Bi2212 phase. Also, it is cofirmed that by optimizing the deposition condition, each single phase of the Bi2201 phase and the Bi2212 phase can be fabricated, the sticking coefficient of Bi element is clearly related to the changing of substrate temperature and the formation of the Bi2212 phase.

  • PDF

Analysis of Stacking-Fault Proportion on the Mixed Phase of the $Bi_2Sr_2Ca_{n-1}Cu_nO_x$(n=0, 1, 2) Superconducting Thin Films ($Bi_2Sr_2Ca_{n-1}Cu_nO_x$(n=0, 1, 2) 초전도 박막의 혼합상에 대한 고용비 해석)

  • Yang, Seung-Ho;Lee, Ho-Shik;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.486-487
    • /
    • 2007
  • $Bi_2Sr_2Ca_{n-1}Cu_nO_x$(n=0, 1, 2) thin films have been fabricated by co-deposition at an ultra-low growth rate using ion beam sputtering(IBS) method. The growth rates of the films was set in the region from 0.17 to 0.27 nm/min. MgO(100) was used as a substrate. In order to appreciate stable existing region of Bi 2212 phase with temperature and ozone pressure, the substrate temperature was between 655 and $820^{\circ}C$ and the highly condensed ozone gas pressure in vacuum chamber was varied between $2{\times}10^{-6}{\sim}4{\times}10^{-5}$ Torr. Bi 2212 phase appeared in the temperature range of 750 and $795^{\circ}C$ and single phase of Bi 2201 existed in the lower region than $785^{\circ}C$. Whereas, $PO_3$ dependance on structural formation was scarcely observed regardless of the pressure variation.

  • PDF

Analysis of the Hi-system Superconducting Thin Films Fabricated by Layer-by-Layer Deposition Method at an Ultra low growth rate (초 저속 순차증착으로 제작한 Bi계 초전도 박막의 생성막 평가)

  • Yang, Seung-Ho;Kim, Young-Pyo;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.503-504
    • /
    • 2007
  • $Bi_2Sr_2Ca_{n-1}Cu_nO_x$(n=0, 1, 2)superconducting thin films have been fabricated by atomic layer-by-layer deposition at an ultra low growth rate using IBS(Ion Beam Sputtering) method. During the deposition, 90 mol% ozone gas of typical pressure of $1{\sim}9{\times}10^{-5}$ Torr are supplied with ultraviolet light irradiation for oxidation. XRD and RHEED investigations reveal out that a buffer layer with some different compositions is formed at the early deposition stage of less than 10 units cell and then Bi-2201 oriented along the c-axis is grown.

  • PDF

A Study on the Resistivity-Temperature Characteristic of the Bi-Superconducting Thin Films Fabricated by using the Bon Beam Sputtering Method (이온 빔 스퍼링 법으로 제작한 Bismuth계 초전도 박막의 저항률-온도특성에 관한 연구)

  • Cheon, Min-Woo;Park, No-Bong;Yang, Sung-Ho;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1218-1221
    • /
    • 2004
  • Bi2212 superconducting thin films fabricated by using the ion Beam Sputtering Method. As a result, although the composition of Bi2212 was set up, the phase of Bi2201, Bi2212 and Bi2223 was formed. The formation area of these stable phases is indicated as inclined line in the direction of the right lower end from the Arrhenius plot of the substrate temperature-oxidation gas pressure, and are distributed in very small area. The activation energy for the phase transformation from the Bi2201 to the Bi2212 is estimated in terms of the Avrami equation.

  • PDF