• 제목/요약/키워드: $Bcl_2$

검색결과 1,660건 처리시간 0.034초

β-lapachone-Induced Apoptosis of Human Gastric Carcinoma AGS Cells Is Caspase-Dependent and Regulated by the PI3K/Akt Pathway

  • Yu, Hai Yang;Kim, Sung Ok;Jin, Cheng-Yun;Kim, Gi-Young;Kim, Wun-Jae;Yoo, Young Hyun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • 제22권3호
    • /
    • pp.184-192
    • /
    • 2014
  • ${\beta}$-lapachone is a naturally occurring quinone that selectively induces apoptotic cell death in a variety of human cancer cells in vitro and in vivo; however, its mechanism of action needs to be further elaborated. In this study, we investigated the effects of ${\beta}$-lapachone on the induction of apoptosis in human gastric carcinoma AGS cells. ${\beta}$-lapachone significantly inhibited cellular proliferation, and some typical apoptotic characteristics such as chromatin condensation and an increase in the population of sub-G1 hypodiploid cells were observed in ${\beta}$-lapachone-treated AGS cells. Treatment with ${\beta}$-lapachone caused mitochondrial transmembrane potential dissipation, stimulated the mitochondria-mediated intrinsic apoptotic pathway, as indicated by caspase-9 activation, cytochrome c release, Bcl-2 downregulation and Bax upregulation, as well as death receptor-mediated extrinsic apoptotic pathway, as indicated by activation of caspase-8 and truncation of Bid. This process was accompanied by activation of caspase-3 and concomitant with cleavage of poly(ADP-ribose) polymerase. The general caspase inhibitor, z-VAD-fmk, significantly abolished ${\beta}$-lapachone-induced cell death and inhibited growth. Further analysis demonstrated that the induction of apoptosis by ${\beta}$-lapachone was accompanied by inactivation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. The PI3K inhibitor LY29004 significantly increased ${\beta}$-lapachone-induced apoptosis and growth inhibition. Taken together, these findings indicate that the apoptotic activity of ${\beta}$-lapachone is probably regulated by a caspase-dependent cascade through activation of both intrinsic and extrinsic signaling pathways, and that inhibition of the PI3K/Akt signaling may contribute to ${\beta}$-lapachone-mediated AGS cell growth inhibition and apoptosis induction.

대장암세포주 HT29에서의 Treculia africana 추출물의 항산화 및 항암 활성 분석 (Anti-oxidative and Anti-cancer Activities of Treculia africana Extract in Human Colon Adenocarcinoma HT29 Cells)

  • 오유나;진수정;박현진;김병우;권현주
    • 생명과학회지
    • /
    • 제25권5호
    • /
    • pp.515-522
    • /
    • 2015
  • Treculia africana Decne는 빵나무종으로 뽕나무과, Treculia 속에 속하는 식물로서, 이 식물의 다양한 부위에서 추출한 물질은 항염증, 항균등의 효과를 가지고 있어 백일해의 치료등 다양한 질환에서 민간요법으로 사용되어 왔다. 하지만 정확한 생리활성에 관한 연구는 보고된 바가 없다. 따라서 본 연구에서는 T. africana Decne 메탄올추출물(META)을 사용하여 항산화능 및 인체 대장암 세포주인 HT29에 대한 항암활성에 관하여 분석하였다. DPPH radical scavenging activity를 통해 분석한 결과, META의 IC50가 4.53 μg/ml로 강력한 항산화능을 보유하 였음을 확인하였다. 또한 META 처리에 의해 HT29의 생존율이 감소함과 더불어 IC50가 66.41 μg/ml로 강력한 세포사멸효과를 나타냈다. META 처리에 의해 HT29의 subG1 세포비율 및 Annexin V+ 세포의 비율이 증가하고, DAPI로 염색된 apoptotic body가 증가하였다. 또한 apoptosis 관련 단백질인 Fas, Bax, cytochrome c의 발현이 증가하였으며, 이는 caspase 3, 8, 9를 활성화 시켜 최종적으로 PARP가 분해되어 apoptosis가 유도되었음을 확인하였다. 이러한 결과들을 통해 META는 강한 항산화 활성과, 대장암세포에서 apoptosis 유도에 의한 높은 항암활성을 보유한 물질임을 확인하였다.

Hep3B 간암세포에서 Caspase-3 활성화를 통한 동충하초 열수추출물의 Apoptosis 유도에 관한 연구 (Induction of Apoptotic Cell Death by Aqueous Extract of Cordyceps militaris Through Activation of Caspase-3 in Human Hepatocarcinoma Hep3B Cells)

  • 김경미;박철;서상호;홍상훈;이원호;최영현
    • 한국식품영양과학회지
    • /
    • 제37권6호
    • /
    • pp.714-720
    • /
    • 2008
  • 본 연구에서는 동충하초(C. militaris)의 항암작용 기전 해석을 위하여 Hep3B 간암세포의 apoptosis 유발에 미치는 동충하초 열수추출물(WECM)의 영향을 조사하였으며, apoptosis 조절에 중요한 몇 가지 유전자들의 발현 및 활성 변화를 조사하였다. AECM 처리에 의한 Hep3B 세포의 증식억제는 형태적 변형을 동반한 apoptosis 유도와 연관성이 있음을 DAPI 염색을 통한 apoptotic body 출현의 증가 및 flow cytometry 분석에 의한 sub-G1 기에 속하는 세포 빈도의 증가로 확인하였다. AECM 처리에 의한 apopotosis 유도에서 Bcl-2 family에 속하는 몇 가지 유전자들의 발현은 큰 변화가 없었으나, caspase-3 및 -8의 활성이 매우 높게 증가 되었으며 이는 PARP 및 ${\beta}$-catenin 단백질의 분해와 연관성이 있었다. 또한 caspase-3 선택적 저해제인 z-DEVD-fmk로 caspase-3의 활성을 인위적으로 차단시켰을 경우, AECM에 의한 apoptois 유도 현상이 유의적으로 감소되어 AECM에 의한 Hep3B 세포의 apoptosis 유발에 caspase-3이 중요한 역할을 하고 있음을 알 수 있었다. 본 연구의 결과만으로 동충하초에 의한 간암세포의 증식억제 기전을 명확하게 제시할 수는 없으나, 이상의 결과들은 동충하초의 생화학적 항암기전 해석을 이해하는데 중요한 기초자료로서 활용될 수 있을 것으로 생각된다.

Molecular Aspects of Japanese Encephalitis Virus Persistent Infection in Mammalian Cells

  • Park Sun-Hee;Won Sung Yong;Park Soo-Young;Yoon Sung Wook;Han Jin Hyun;Jeong Yong Seok
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2000년도 International Meeting 2000
    • /
    • pp.23-36
    • /
    • 2000
  • Japanese encephalitis virus (JEV) is the causative agent of a mosquito-borne encephalitis and is transmitted to human via persistently infected mosquito vectors. Although the virus is known to cause only acute infection, there were reports that showed neurological sequelae, latent infection in peripheral mononuclear cells, and recurrence of the disease after acute encephalitis. Innate resistance of certain cell lines, abnormal SN1 expression of the virus, and anti-apoptotic effect of cullular bcl-2 have been suggested as probable causes of JEV persistence even in the absence of defective interfering (DI) particles. Although possible involvement of DI particles in JEV persistence was suggested, neither has a direct evidence for DI presence nor its molecular characterization been made. Two questions asked in this study are whether the DI virus plays any role in JEV persistent infection if it is associated with and what type of change(s) can be made in persistently infected cells to avoid apoptosis even with the continuous virus replication, DI-free standard stock of JEV was infected in BHK-21, Vero, and SW13 cells and serial high multiplicity passages were performed in order to generate DI particles. There different-sized DI RNA species which were defective in both structural and nonstructural protein coding genes. Rescued ORFs of the DI genome maintained in-frame and the presence of replicative intermediate or replicative form RNA of the DI particles confirmed their replication competence. On the other hand, several clones with JEV persistent infection were established from the cells survived acute infections during the passages. Timing of the DI virus generation during the passages seemed coincide to the appearance of persistently infected cells. The DI RNAs were identified in most of persistently infected cells and were observed throughout the cell maintenance. One of the cloned cell line maintained the viral persistence without DI RNA coreplication. The cells with viral persistence released the reduced but continuous infectious JEV particle for up to 9 months and were refractory to homologous virus superinfection but not to heterologous challenges. Unlike the cells with acute infection these cells were devoid of characteristic DNA fragmentation and JEV-induced apoptosis with or without homologous superinfection. Therefore, the DI RNA generated during JEV undiluted serial passage on mammalian cells was shown to be biologically active and it seemed to be responsible, at least in part, for the establishment and maintenance of the JEV persistence in mammalian cells. Viral persistence without DI RNA coreplication, as in one of the cell clones, supports that JEV persistent infection could be maintained with or without the presence of DI particles. In addition, the fact that the cells with JEV persistence were resistant against homologous virus superinfection, but not against heterologous one, suggests that different viruses have their own and independent pathway for cytopathogenesis even if viral cytopathic effect could be converged to an apoptosis after all.

  • PDF

Improvement Characteristics of Bio-active Materials Coated Fabric on Rat Muscular Mitochondria

  • Lee, Donghee;Kim, Young-Won;Kim, Jung-Ha;Yang, Misuk;Bae, Hyemi;Lim, Inja;Bang, Hyoweon;Go, Kyung-Chan;Yang, Gwang-Wung;Rho, Yong-Hwan;Park, Hyo-Suk;Park, Eun-Ho;Ko, Jae-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권3호
    • /
    • pp.283-289
    • /
    • 2015
  • This study surveys the improvement characteristics in old-aged muscular mitochondria by bio-active materials coated fabric (BMCF). To observe the effects, the fabric (10 and 30%) was worn to old-aged rat then the oxygen consumption efficiency and copy numbers of mitochondria, and mRNA expression of apoptosis- and mitophagy-related genes were verified. By wearing the BMCF, the oxidative respiration significantly increased when using the 30% materials coated fabric. The mitochondrial DNA copy number significantly decreased and subsequently recovered in a dose-dependent manner. The respiratory control ratio to mitochondrial DNA copy number showed a dose-dependent increment. As times passed, Bax, caspase 9, PGC-$1{\alpha}$ and ${\beta}$-actin increased, and Bcl-2 decreased in a dose-dependent manner. However, the BMCF can be seen to have had no effect on Fas receptor. PINK1 expression did not change considerably and was inclined to decrease in control group, but the expression was down-regulated then subsequently increased with the use of the BMCF in a dose-dependent manner. Caspase 3 increased and subsequently decreased in a dose-dependent manner. These results suggest that the BMCF invigorates mitophagy and improves mitochondrial oxidative respiration in skeletal muscle, and in early stage of apoptosis induced by the BMCF is not related to extrinsic death-receptor mediated but mitochondria-mediated signaling pathway.

Induction of Forkhead Class box O3a and apoptosis by a standardized ginsenoside formulation, KG-135, is potentiated by autophagy blockade in A549 human lung cancer cells

  • Yao, Chih-Jung;Chow, Jyh-Ming;Chuang, Shuang-En;Chang, Chia-Lun;Yan, Ming-De;Lee, Hsin-Lun;Lai, I-Chun;Lin, Pei-Chun;Lai, Gi-Ming
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.247-256
    • /
    • 2017
  • Background: KG-135, a standardized formulation enriched with Rk1, Rg3, and Rg5 ginsenosides, has been shown to inhibit various types of cancer cells; however, the underlying mechanisms are not fully understood. In this study, we explored its effects in A549 human lung cancer cells to investigate the induction of Forkhead Class box O3a (FOXO3a) and autophagy. Methods: Cell viability was determined by sulforhodamine B staining. Apoptosis and cell cycle distribution were analyzed using flow cytometry. The changes of protein levels were determined using Western blot analysis. Autophagy induction was monitored by the formation of acidic vesicular organelles stained with acridine orange. Results: KG-135 effectively arrested the cells in G1 phase with limited apoptosis. Accordingly, a decrease of cyclin-dependent kinase-4, cyclin-dependent kinase-6, cyclin D1, and phospho-retinoblastoma protein, and an increase of p27 and p18 proteins were observed. Intriguingly, KG-135 increased the tumor suppressor FOXO3a and induced the accumulation of autophagy hallmark LC3-II and acidic vesicular organelles without an increase of the upstream marker Beclin-1. Unconventionally, the autophagy adaptor protein p62 (sequestosome 1) was increased rather than decreased. Blockade of autophagy by hydroxychloroquine dramatically potentiated KG-135-induced FOXO3a and its downstream (FasL) ligand accompanied by the cleavage of caspase-8. Meanwhile, the decrease of Bcl-2 and survivin, as well as the cleavage of caspase-9, were also drastically enhanced, resulting in massive apoptosis. Conclusion: Besides arresting the cells in G1 phase, KG-135 increased FOXO3a and induced an unconventional autophagy in A549 cells. Both the KG-135-activated extrinsic FOXO3a/FasL/caspase-8 and intrinsic caspase-9 apoptotic pathways were potentiated by blockade of autophagy. Combination of KG-135 and autophagy inhibitor may be a novel strategy as an integrative treatment for cancers.

SIRT1 inhibitor에 의한 Hsp90 inhibitor의 Hsp90 샤페론 기능 억제 및 항암제 내성세포의 Hsp90 inhibitor에 대한 세포독성 증강 (SIRT1 Inhibitor Enhances Hsp90 Inhibitor-mediated Abrogation of Hsp90 Chaperone Function and Potentiates the Cytotoxicity of Hsp90 Inhibitor in Chemo-resistant Human Cancer Cells)

  • 문현정;이수훈;김학봉;이경아;강치덕;김선희
    • 생명과학회지
    • /
    • 제26권7호
    • /
    • pp.826-834
    • /
    • 2016
  • 본 연구는 Hsp90 inhibitor 및 SIRT1 inhibitor의 병용처리가 항암제 다제내성(MDR) 인간 암세포의 증식 억제에 효과적임을 밝혔다. SIRT1 활성 억제가 Hsp90 inhibitor인 17-AAG의 세포 독성의 효과를 증강시켰으며, 이로 인해 Hsp90 inhibitors에 대한 내성을 극복시킬 수 있음을 인간 자궁암세포인 HeyA8의 MDR 변이주인 HeyA8- MDR 세포에서 확인하였다. SIRT1 inhibitor는 Hsp90 inhibitor에 의한 Hsp90 샤페론 기능 억제를 증강시키며, ubiquitin ligase CHIP의 발현 증강을 유발하여, Hsp90 client protein 인 mutant p53 (mut p53)의 분해를 촉진시킨다. Mut p53 의 발현 감소는 암세포의 Hsp90 inhibitor 내성 획득의 가장 중요한 원인으로 지적되는 heat shock factor 1 (HSF1)/heat shock proteins (Hsps)의 발현 억제와 관련됨을 알 수 있었으며, 이는 항암제 다제내성 세포에서 SIRT1 inhibitor에 의하여 Hsp90 inhibitor에 대한 감수성이 증강되는 분자적 기전임을 밝혔다. 그러므로, SIRT1 억제에 의한 mut p53/HSF1 발현 감소가 MDR 암세포의 Hsp90 inhibitors 내성 극복에 매우 유효함을 시사하는 결과를 얻었다.

SNU-16 위암 세포주에서 p-coumaric acid의 세포성장 억제 효과 (Anti-proliferative Properties of p-Coumaric Acid in SNU-16 Gastric Cancer Cells)

  • 장미경;고희철;김세재
    • 생명과학회지
    • /
    • 제29권7호
    • /
    • pp.809-816
    • /
    • 2019
  • p-Coumaric acid (p-CA)는 항산화 및 항염 활성을 가진 식물계에서 가장 풍부한 식물화학물질이다. 그러나 위암세주포에서 p-CA의 항암 활성과 전사체 발현에 대한 연구는 아직까지 수행된 바 없다. 본 연구에서는 SNU-16 위암세포에서 p-CA에 의한 세포 증식 억제 및 전사체 프로파일에 미치는 영향을 조사하였다. p-CA는 세포사멸 단백질 발현을 조절하여 SNU-16 세포에서의 세포사멸을 유도하였다. RNA-seq 분석을 사용하여 p-CA처리에 의해 SNU-16 세포에서 차별적으로 발현된 유전자(DEGs)를 동정하였다. DEGs들의 gene ontology (GO) 술어로 유전자 산물을 검색한 결과, 주로 염증반응, 세포사멸 과정, 세포주기 및 면역 반응에 관여하는 생물학적 과정에 관여하는 것으로 나타났다. 또한, KEGG 경로분석 결과, p-CA는 주로 PI3K-Akt 와 암 신호전달 경로에 변화를 유발하였다. 본 연구결과는 p-CA가 세포증식과 암 신호 전달 경로에 관여하는 유전자 발현을 조절함으로써 위암 예방 효과를 나타낼 수 있음을 시사한다.

Korean Red Pine (Pinus densiflora) Bark Extract Attenuates Aβ-Induced Cognitive Impairment by Regulating Cholinergic Dysfunction and Neuroinflammation

  • Go, Min Ji;Kim, Jong Min;Kang, Jin Yong;Park, Seon Kyeong;Lee, Chang Jun;Kim, Min Ji;Lee, Hyo Rim;Kim, Tae Yoon;Joo, Seung Gyum;Kim, Dae-Ok;Heo, Ho Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권9호
    • /
    • pp.1154-1167
    • /
    • 2022
  • In this study, we investigated the anti-amnesic effect of Korean red pine (Pinus densiflora) bark extract (KRPBE) against amyloid beta1-42 (Aβ1-42)-induced neurotoxicity. We found that treatment with KRPBE improved the behavioral function in Aβ-induced mice, and also boosted the antioxidant system in mice by decreasing malondialdehyde (MDA) content, increasing superoxide dismutase (SOD) activities, and reducing glutathione (GSH) levels. In addition, KRPBE improved the cholinergic system by suppressing reduced acetylcholine (ACh) content while also activating acetylcholinesterase (AChE), regulating the expression of choline acetyltransferase (ChAT), postsynaptic density protein-95 (PSD-95), and synaptophysin. KRPBE also showed an ameliorating effect on cerebral mitochondrial deficit by regulating reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and ATP levels. Moreover, KRPBE modulated the expression levels of neurotoxicity indicators Aβ and phosphorylated tau (p-tau) and inflammatory cytokines TNF-α, p-IκB-α, and IL-1β. Furthermore, we found that KRPBE improved the expression levels of neuronal apoptosis-related markers BAX and BCl-2 and increased the expression levels of BDNF and p-CREB. Therefore, this study suggests that KRPBE treatment has an anti-amnestic effect by modulating cholinergic system dysfunction and neuroinflammation in Aβ1-42-induced cognitive impairment in mice.

Allomyrina dichotoma larva extract attenuates free fatty acid-induced lipotoxicity in pancreatic beta cells

  • Kim, Kyong;Kwak, Min-Kyu;Bae, Gong-Deuk;Park, Eun-Young;Baek, Dong-Jae;Kim, Chul-Young;Jang, Se-Eun;Jun, Hee-Sook;Oh, Yoon Sin
    • Nutrition Research and Practice
    • /
    • 제15권3호
    • /
    • pp.294-308
    • /
    • 2021
  • BACKGROUD/OBJECTIVES: Allomyrina dichotoma larva (ADL), one of the many edible insects recognized as future food resources, has a range of pharmacological activities. In a previous study, an ADL extract (ADLE) reduced the hepatic insulin resistance of high-fat diet (HFD)-induced diabetic mice. On the other hand, the associated molecular mechanisms underlying pancreatic beta-cell dysfunction remain unclear. This study examined the effects of ADLE on palmitate-induced lipotoxicity in a beta cell line of a rat origin, INS-1 cells. MATERIALS/METHODS: ADLE was administered to high-fat diet treated mice. The expression of apoptosis-related molecules was measured by Western blotting, and reactive oxidative stress generation and nitric oxide production were measured by DCH-DA fluorescence and a Griess assay, respectively. RESULTS: The administration of ADLE to HFD-induced diabetic mice reduced the hyperplasia, 4-hydroxynonenal levels, and the number of apoptotic cells while improving the insulin levels compared to the HFD group. Treatment of INS-1 cells with palmitate reduced insulin secretion, which was attenuated by the ADLE treatment. Furthermore, the ADLE treatment prevented palmitate-induced cell death in INS-1 cells and isolated islets by reducing the apoptotic signaling molecules, including cleaved caspase-3 and PARP, and the Bax/Bcl2 ratio. ADLE also reduced the levels of reactive oxygen species generation, lipid accumulation, and nitrite production in palmitate-treated INS-1 cells while increasing the ATP levels. This effect corresponded to the decreased expression of inducible nitric oxide synthase (iNOS) mRNA and protein. CONCLUSIONS: ADLE helps prevent lipotoxic beta-cell death in INS-1 cells and HFD-diabetic mice, suggesting that ADLE can be used to prevent or treat beta-cell damage in glucose intolerance during the development of diabetes.