• Title/Summary/Keyword: $BaTiO_3$ thin film

Search Result 203, Processing Time 0.03 seconds

The Surface Image Properties of BST Thin Film by Depositing Conditions (코팅 조건에 따른 BST 박막의 표면 이미지 특성)

  • Hong, Kyung-Jin;Ki, Hyun-Cheol;Ooh, Soo-Hong;Cho, Jae-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.107-110
    • /
    • 2002
  • The optical memory devices of BST thin films to composite $(Ba_{0.7}\;Sr_{0.3})TiO_{3}$ using sol-gel method were fabricated by changing of the depositing layer number on $Pt/Ti/SiO_{2}/Si$ substrate. The structural properties of optical memory devices to be ferroelectric was investigated by fractal analysis and 3-dimension image processing. The thickness of BST thin films at each coating numbers 3, 4 and 5 times was $2500[\AA]$, $3500[\AA]$ and $3800[\AA]$. BST thin films exhibited the most pronounced grain growth. The surface morphology image was roughness with coating numbers. The thin films increasing with coating numbers shows a more textured and complex configuration.

  • PDF

Epitaxial Growth of $BiFeO_3-Ba(Cu_{1/3}Nb_{2/3})O_3$ Thin Films Deposited by Pulsed Laser Deposition

  • Baek, Chang-U;Lee, Jong-Pil;Seong, Gil-Dong;Jeong, Jong-Hun;Ryu, Jeong-Ho;Yun, Un-Ha;Park, Dong-Su;Jeong, Dae-Yong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.30.1-30.1
    • /
    • 2011
  • Multiferroic thin films with composition $0.9BiFeO_3-0.1Ba(Cu_{1/3}Nb_{2/3})O_3$ were epitaxially grown by pulsed laser deposition on $SrRuO_3(001)/SrTiO_3$ (000) substrate $0.9BiFeO_3-0.1Ba(Cu_{1/3}Nb_{2/3})O_3$, which is assumed to be morphotropic phase boundary (MPB), that showed superior dielectric, ferroelectric and magnetic properties in our study on polycrystalline films. The structures of epitaxially grown films were characterized by means of XRD. From P-E measurements, samples exhibited typical ferroelectric hysteresis loops and large remnant polarization, whose value is much larger than those of pure BFO film. The enhancement of dielectric, ferroelectric, magnetic properties was attributed to the structural distortion induced by the BCN addition and the high physical stress effect.

  • PDF

Analysis of structural properties of epitaxial BST thin films prepared by pulsed laser deposition (펄스형 레이저 증착법으로 제조된 에피탁시 BST 박막의 구조 분석)

  • 김상섭;제정호
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.355-360
    • /
    • 1998
  • Epitaxial $Ba_{0.5}Sr_{0.5}TiO_3$thin films of two different thickness (~250 $\AA$ and ~1340 $\AA$) on MgO(001) prepared by a pulsed laser deposition method were studied by synchroton x-ray scattering measurements. The film initially grew on MgO(001) with a cube-on-cube relationship, maintaining it during further growth. As the film grew, the surface of the film became rough significantly, but the interface between the film and the substrate seemed to have changed little. In the early stage, the film was highly strained in a tetragonal structure with the longer axis parallel to the surface normal direction. As the growth proceeded further, it was mostly relaxed to a cubic structure with the lattice parameter of the bulk value and the mosaic distribution improved significantly in both in-plane and out-of-plane directions.

  • PDF

Covering Effects of post-deposition annealing for BST thin films on $Al_2O_3$ (사파이어 기판위에 올린 BST박막의 후 열처리 효과)

  • Lee, Dong-Woo;Koh, Jung-Hyuk;Roh, Ji-Hyoung;Moon, Byung-Moo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.266-267
    • /
    • 2007
  • $Ba_{0.5}Sr_{0.5}TiO_3$(BST) films with different deposition temperatures were deposited on $Al_2O_3$ substrate by Nd:YAG Pulsed Laser Deposition(PLD). The deposition conditions to achieve high crystal structures and dielectric properties were optimized for both techniques. The structural characterization on the BST thin films was performed by X-Ray Diffraction(XRD) and Atomic Force Microscopy (AFM). Effects of post-deposition annealing of BST films were investigated. The best dielectric properties were obtained on $800^{\circ}C$ deposited BST film with post-deposition annealing at $1100^{\circ}C$ in flowing $O_2$ atmosphere for 2hours.

  • PDF

Thermally Stimulated Current Analysis of (Ba, Sr)TiO$_3$ Capacitor ((Ba, Sr)TiO$_3$ 커패시터의 Thermally Stimulated Current분석)

  • Kim, Yong-Ju;Cha, Seon-Yong;Lee, Hui-Cheol;Lee, Gi-Seon;Seo, Gwang-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.5
    • /
    • pp.329-337
    • /
    • 2001
  • It has been known that the leakage current in the low field region consists of the dielectric relaxation current and intrinsic leakage current, which cause the charge loss in dynamic random access memory (DRAM) storage capacitor using (Ba,Sr)TiO$_{3}$ (BST) thin film. Especially, the dielectric relaxation current should be seriously considered since its magnitude is much larger than that of the intrinsic leakage current in giga-bit DRAM operation voltage (~IY). In this study, thermally stimulated current (TSC) measurement was at first applied to investigate the activation energy of traps and relative evaluation of the density of traps according to process change. And, through comparing TSC to early methods of I-V or I-t measurement and analyzing, we identify the origin of the dielectric relaxation current and investigate the reliability of TSC measurement. First, the polarization condition such as electric field, time, temperature and heating rate was investigated for reliable TSC measurement. From the TSC measurement, the energy level of traps in the BST thin film has been investigated and evaluated to be 0.20($\pm$0.01) eV and 0.45($\pm$0.02) eV. Based on the TSC measurement results before and after rapid thermal annealing (RTA) process, oxygen vacancy is concluded to be the origin of the traps. TSC characteristics with thermal annealing in the MIM BST capacitor have shown the same trends with the current-voltage (I-V) and current-time (I-t) characteristics. This means that the TSC measurement is one of the effective methods to characterize the traps in the BST thin film.

  • PDF

Electrical Characteristics of $(Ba,Sr)TiO_3/RuO_2$ Thin films

  • Park Chi-Sun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.63-70
    • /
    • 2004
  • The structural, electrical properties of $(Ba, Sr)TiO_3[BSTO]/RuO_2$ thin films were examined by the addition of amorphous BSTO layer between crystlline BSTO film and $RuO_2$ substrate. We prepared BSTO films with double-layered structure, that is, amorphous layers deposited at $60^{\circ}C$ and crystalline films. Crystalline films were prepared at 550 on amorphous BSTO layer. The thickness of the amorphous layers was varied from 0 to 170 nm. During the deposition of crystalline films, the crystallization of the amorphous layers occurred and the structure was changed to circular while crystalline BSTO films showed columnar structure. Due to insufficient annealing effect, amorphous BSTO phase was observed when the thickness of the amorphous layers exceeded 30 nm. Amorphous BSTO layer could also prevent the formation of oxygen deficient region in $RuO_2$ surface. Leakage current of total BSTO films decreased with increasing amorphous layer thickness due to structural modifications. Dielectric constant showed maxi-mum value of 343 when amorphous layer thickness was 30 nm at which the improvement by grain growth and the degradation by amorphous phase were balanced.

  • PDF

Etching Characteristics BST Thin Film in $CF_4$/Ar Plasma ($CF_4$/Ar 플라즈마에 의한 BST 박막 식각 특성)

  • 김동표;김창일;서용진;이병기;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.866-869
    • /
    • 2001
  • In this study, (Ba,Sr)TiO$_3$(BST) thin films were etched with a magnetically enhanced inductively coupled plasma(MEICP). Etching characteristics of BST thin films including etch rate and selectivity were evaluated as a function of the etching parameters such as gas mixing ratio, rf power, dc bias voltage and chamber pressure. The maximum etch rate of the BST films was 1700 $\AA$/min at Ar(90)/CF$_4$(10), 600 W/350 V and 5 mTorr. The selectivity of BST to PR was 0.6, 0.7, respectively. To analyze the composition of surface residue remaining after the etching, samples etched with different CF$_4$/Ar gas mixing ratio were investigated with X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). From the results of XPS and SIMS, there are chemical reaction between Ba, Sr, Ti and C, F radicals during the etching and remained on the surface.

  • PDF

Characterization of Ferroelectric Thin Film in Microwave Region (마이크로파대에서의 강유전 박막 유전 특성 평가)

  • Park, Jeong-Heum
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.10
    • /
    • pp.1061-1067
    • /
    • 2004
  • In this study, ferroelectric (Ba,Sr)TiO$_3$ and high temperature superconductor YBCO thin films were fabricated by PLD (Pulsed Laser Deposition) method and tuneable bandstop filters were implemented with two different IDC(Interdigital Capacitance) gap patterns, 20${\mu}{\textrm}{m}$ and 30${\mu}{\textrm}{m}$ using these two thin film layers. The resonant frequency was changed by DC bias voltage. By comparing measured results with simulation, the dielectric properties of ferroelectric thin film have been extracted. The permittivity was 820 ~ 900 at 30 K and had an acceptable error range but the loss tangent had a great difference, 0.018 in 30${\mu}{\textrm}{m}$ IDC gap pattern and 0.037 in 20 ${\mu}{\textrm}{m}$.

BST Thin Film Multi-Layer Capacitors

  • Choi, Woo Sung;Kang, Min-Gyu;Ju, Byeong-Kwon;Yoon, Seok-Jin;Kang, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.319-319
    • /
    • 2013
  • Even though the fabrication methods of metal oxide based thin film capacitor have been well established such as RF sputtering, Sol-gel, metal organic chemical vapor deposition (MOCVD), ion beam assisted deposition (IBAD) and pulsed laser deposition (PLD), an applicable capacitor of printed circuit board (PCB) has not realized yet by these methods. Barium Strontium Titanate (BST) and other high-k ceramic oxides are important materials used in integrated passive devices, multi-chip modules (MCM), high-density interconnect, and chip-scale packaging. Thin film multi-layer technology is strongly demanded for having high capacitance (120 nF/$mm^2$). In this study, we suggest novel multi-layer thin film capacitor design and fabrication technology utilized by plasma assisted deposition and photolithography processes. Ba0.6Sr0.4TiO3 (BST) was used for the dielectric material since it has high dielectric constant and low dielectric loss. 5-layered BST and Pt thin films with multi-layer sandwich structures were formed on Pt/Ti/$SiO_2$/Si substrate by RF-magnetron sputtering and DC-sputtering. Pt electrodes and BST layers were patterned to reveal internal electrodes by photolithography. SiO2 passivation layer was deposited by plasma-enhanced chemical vapor deposition (PE-CVD). The passivation layer plays an important role to prevent short connection between the electrodes. It was patterned to create holes for the connection between internal electrodes and external electrodes by reactive-ion etching (RIE). External contact pads were formed by Pt electrodes. The microstructure and dielectric characteristics of the capacitors were investigated by scanning electron microscopy (SEM) and impedance analyzer, respectively. In conclusion, the 0402 sized thin film multi-layer capacitors have been demonstrated, which have capacitance of 10 nF. They are expected to be used for decoupling purpose and have been fabricated with high yield.

  • PDF