• Title/Summary/Keyword: $Ba(Ti,Sn)O_3$ film

Search Result 3, Processing Time 0.02 seconds

Synthesis and Properties of Ba(Ti,Sn)O3 Films by E-Beam Evaporation (전자빔증발법에 의한 Ba(Ti,Sn)O3막의 제조 및 특성)

  • Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.18 no.7
    • /
    • pp.373-378
    • /
    • 2008
  • $Ba(Ti,Sn)O_3$ thin films, for use as dielectrics for MLCCs, were grown from Sn doped BaTiO3 sources by e-beam evaporation. The crystalline phase, microstructure, dielectric and electrical properties of films were investigated as a function of the (Ti+Sn)/Ba ratio. When $BaTiO_3$ sources doped with $20{\sim}50\;mol%$ of Sn were evaporated, $BaSnO_3$films were grown due to the higher vapor pressure of Ba and Sn than of Ti. However, it was possible to grow the $Ba(Ti,Sn)O_3$ thin films with {\leq}\;15\;mol%$ of Sn by co-evaporation of BTS and Ti metal sources. The (Ti+Sn)/Ba and Sn/Ti ratio affected the microstructure and surface roughness of films and the dielectric constant increased with increasing Sn content. The dielectric constant and dissipation factor of $Ba(Ti,Sn)O_3$ thin films with {\leq}\;15\;mol%$ of Sn showed the range of 120 to 160 and $2.5{\sim}5.5%$ at 1 KHz, respectively. The leakage current density of films was order of the $10^{-9}{\sim}10^{-8}A/cm^2$ at 300 KV/cm. The research results showed that it was feasible to grow the $Ba(Ti,Sn)O_3$ thin films as dielectrics for MLCCs by an e-beam evaporation technique.

A comparative study on the flux pinning properties of Zr-doped YBCO film with those of Sn-doped one prepared by metal-organic deposition

  • Choi, S.M.;Shin, G.M.;Joo, Y.S.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.15-20
    • /
    • 2013
  • We investigated the flux pinning properties of both 10 mol% Zr-and Sn-doped $YBa_2Cu_3O_{7-{\delta}}$ (YBCO) films with the same thickness of ~350 nm for a comparative purpose. The films were prepared on the $SrTiO_3$ (STO) single crystal substrate by the metal-organic deposition (MOD) process. Compared with Sn-doped YBCO film, Zr-doped one exhibited a significant enhancement in the critical current density ($J_c$) and pinning force density ($F_p$). The anisotropic $J_{c,min}/J_{c,max}$ ratio in the field-angle dependence of $J_c$ at 77 K for 1 T was also improved from 0.23 for Sn-doped YBCO to 0.39 for Zr-doped YBCO. Thus, the highest magnetic $J_c$ values of 9.0 and $2.9MA/cm^2$ with the maximum $F_p$ ($F_{p,max}$) values of 19 and $5GN/m^3$ at 65 and 77 K for H // c, respectively, could be achieved from Zr-doped YBCO film. The stronger pinning effect in Zr-doped YBCO film is attributable to smaller $BaZrO_3$ (BZO) nanoparticles (the average size ${\approx}28.4$ nm) than $YBa_2SnO_{5.5}$ (YBSO) nanoparticles (the average size ${\approx}45.0$ nm) incorporated in Sn-doped YBCO film since smaller nanoparticles can generate more defects acting as effective flux pinning sites due to larger incoherent interfacial area for the same doping concentration.

Thick Film Gas Sensor Based on PCB by Using Nano Particles (나노 입자를 이용한 PCB 기반 후막 가스 센서)

  • Park, Sung-Ho;Lee, Chung-Il;Song, Soon-Ho;Kim, Yong-Jun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.2 s.43
    • /
    • pp.59-63
    • /
    • 2007
  • This paper presented a low-cost thick film gas sensor module, which was based on simple PCB (Printed Circuit Board) process. The proposed sensor module included a $NO_2/H_2$ gas sensor, a relative humidity sensor, and a heating element. The $NO_2/H_2$ gas and relative humidity sensors were realized by screen-printing $SnO_2,\;BaTiO_3$ nano-powders on IDTS (Interdigital Transducer) of a PCB substrate, respectively. At first 1% $H_2$ gas flowed into the sensor chamber. After 4 min, air filled the chamber while $H_2$ gas flow stopped. This experiment was performed repeatedly. The Identical procedure was used for the $NO_2$ detection. The result for sensing $H_2$ gas showed the increase of voltage from 0.8V to 3.5V due to the conductance increase and its reaction response time by hydrogen flow was 65 sec. $NO_2$ sensing results showed 2.7 V voltage drop due to the conductance decrease and its response time was 3 sec through a voltage monitoring.

  • PDF