• Title/Summary/Keyword: $Ar^+$ laser

Search Result 328, Processing Time 0.031 seconds

Infrared Multiphoton Dissociation of $CHCl_2F$: Reaction Mechanisms and Product Ratio Dependence on Pressure and Laser Pulse Energy

  • Song, Nam-Woong;Lee, Won-Chul;Kim, Hyong-Ha
    • Journal of Photoscience
    • /
    • v.12 no.2
    • /
    • pp.101-107
    • /
    • 2005
  • Infrared multiphoton dissociation of $CHCl_2F$ was studied using $CO_2$ laser excitation. Three products, $C_2Cl_2F_2$, $C_2ClF_3$, and $C_2HClF_2$, were identified by the analysis of the gas mixture from the photoreaction of $CHCl_2F$. The dependence of the reaction probability on added Ar gas pressure and excitation laser pulse energy was investigated. At low pressure (< 10 torr), the reaction probability increased as Ar pressure increased due to the rotational hole-filling effect, while it diminished with the increase of Ar pressure at high pressure (> > 20 torr) due to the collisional deactivation. The ratio of two products $(C_2ClF_3/C_2Cl_2F_2)$ decreased at low pressure (< 10 torr) and increased at high pressure (> 20 torr) with the increase of Ar pressure. The log-log plot of the reaction probability vs. laser pulse energy (${\\phi}$) was found to have a linear relationship, and its slope decreased as the added Ar pressure was increased. The reaction mechanisms for product formation have been suggested and validated by experimental evidences and considering the energetics. Fluorine-chlorine exchange reaction in the intermediate complex has been suggested to explain the formation of $C_2ClF_3$.

  • PDF

The Study on the Excitation Lasers for NO Planar Laser-Induced Fluorescence Imaging (NO PLIF용 excitation 레이저에 관한 연구)

  • Kang, Kyung-Tae
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.13-21
    • /
    • 1997
  • Excitations of eight pumping transitions for nitric oxide fluorescence imaging are analyzed under equivalent experimental conditions to determine the detection. Frequency mixed dye laser pumping, 1st anti-Stokes $H_2$ Raman of KrF excimer laser pumping and ArF excimer laser pumping show good sensitivities.

  • PDF

Effect of shield gas on the characteristics of $CO_2$ laser welded 600MPa grade high strength steel (600MPa급 자동차용 고장렬강판의 $CO_2$ 레이저 용접부의 특성에 미치는 보호가스의 영향)

  • Han Tae-Kyo;Lee Bong-Keun;Kang Chung-Yun
    • Laser Solutions
    • /
    • v.7 no.2
    • /
    • pp.19-26
    • /
    • 2004
  • The effect of shield gas on the weldability, mechanical properties and formability of CO2 laser weld joint in 600MPa grade high strength steel was investigated. Bead on plate welds were made under various welding speed and shield gas. Tensile test was carried out under the load of perpendicular and parallel direction to the weld line, Formability of the joint was evaluated by Erichsen test. As the welding speed increases, the porosity fraction decreases. The porosity fraction in the joint used Ar-$50\%He$ mixed gas as a shield gas was lower than that of the joint used Ar gas. Hardness at the weld metal of full penetrated joint was nearly equal to that of water quenched raw metal. In a tensile test under a perpendicular load to the weld axis, strength and elongation of joint produced by optimum condition were nearly equal to those of base metal. However, the strength of joint in a tensile test under a parallel load to weld axis was higher than that of raw metal, but the elongation of joint was lower than that of raw metal. Elongation and formability were further increased by the method of using Ar+He mixed gas as a shield gas as compared with Ar gas. Formabilities of joints were recorded ranging from $58\%\;to\;70\%$ of that of base metal with different shield gases.

  • PDF

Study on the Composition and Crystallization of TiNi Thin Films Fabricated by Pulsed Laser Deposition in Ambient Ar Gas (Ar가스 분위기에서 PLD방법으로 제작된 TiNi박막의 조성 및 결정성에 관한 연구)

  • Cha, J.O.;Shin, C.H.;Yeo, S.J.;Ahn, J.S.;Nam, T.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.116-121
    • /
    • 2007
  • TiNi shape memory alloy(SMA) was fabricated by PLD(plused laser deposition) using equiatomic TiNi target. Composition and crystallization of TiNi thin films which were fabricated in ambient Ar gas(200m Torr)and vacuum($5{\times}10^{-6}\;Torr$) were investigated. Composition of TiNi thin films was characterized by energy-dispersive X-ray spectrometry (EDXS) and crystallization was confirmed by X-ray diffraction (XRD). The composition of films depends on the distance between target and substrate but does not sensitively depend on the substrate temperature. It is found that the composition of films can be easily controlled when substrate is placed inside plume in ambient Ar gas. It is also found that the in situ crystallization temperature ($ca.\;400^{\circ}C$) in ambient Ar gas is lowered in comparison with that of TiNi film prepared under vacuum. The low crystallization temperature in ambient Ar gas makes it possible to prepare the crystalline TiNi thin film without contamination.

Design and Properties Related to Anti-reflection of 1.3μm Distributed Feedback Laser Diode (1.3μm 분포 괴환형 레이저 다이오드의 무반사 설계 및 특성)

  • Ki, Hyun-Chul;Kim, Seon-Hoon;Hong, Kyung-Jin;Kim, Hwe-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.248-251
    • /
    • 2009
  • We have investigated the effect of the quality of 1.3 um distributed feed back laser diode (DFB-LD) on the design of anti-reflection (AR) coatings. Optimal condition of AR coating to prevent internal feedback from both facets and reduce the reflection-induced intensity noise of laser diode was simulated with Macleod Simulator. Coating materials used in this work were ${Ti_3}{O_5}$ and $SiO_2$, of which design thickness were 105 nm and 165 nm, respectively. AR coating films were deposited by Ion-Assisted Deposition system. The electrical and optical properties of 1.3 um laser diode were characterized by Bar tester and Chip tester. Threshold current and slop-efficiency of DFB-LD were 27.56 mA 0.302 W/A. Far field pattern and wavelength of DFB-LD were $22.3^{\circ}(Horizontal){\times}24.4^{\circ}$ (Vertical), 1313.8 nm, respectively.

Characteristics of single/poly crystalline silicon etching by$Ar^+$ ion laser for MEMS applications (MEMS 응용을 위한 $Ar^+$ 이온 레이저에 의한 단결정/다결정 실리콘 식각 특성)

  • Lee, Hyun-Ki;Han, Seung-Oh;Park, Jung-Ho;Lee, Cheon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.396-401
    • /
    • 1999
  • In this study, $Ar^+$ ion laser etching process of single/poly-crystalline Si with $CCl_2F_2$ gas is investigated for MEMS applications. In general, laser direct etching process is useful in microelectronic process, fabrication of micro sensors and actuators, rapid prototyping, and complementary processing because of the advantages of 3D micromachining, local etching/deposition process, and maskless process with high resolution. In this study, a pyrolytic method, in which $CCl_2F_2$ gasetches molten Si by the focused laser, was used. In order to analyze the temperature profile of Si by the focused laser, the 3D heat conduction equation was analytically solved. In order to investigate the process parameters dependence of etching characteristics, laser power, $CCl_2F_2$ gas pressure, and scanning speed were varied and the experimental results were observed by SEM. The aspect ratio was measured in multiple scanning and the simple 3D structure was fabricated. In addition, the etching characteristics of $6\mum$ thick poly-crystalline Si on the insulator was investigated to obtain flat bottom and vertical side wall for MEMS applications.

  • PDF

Ridge Formation by Dry-Etching of Pd and AlGaN/GaN Superlattice for the Fabrication of GaN Blue Laser Diodes

  • Kim, Jae-Gwan;Lee, Dong-Min;Park, Min-Ju;Hwang, Seong-Ju;Lee, Seong-Nam;Gwak, Jun-Seop;Lee, Ji-Myeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.391-392
    • /
    • 2012
  • In these days, the desire for the precise and tiny displays in mobile application has been increased strongly. Currently, laser displays ranging from large-size laser TV to mobile projectors, are commercially available or due to appear on the market [1]. In order to achieve a mobile projectors, the semiconductor laser diodes should be used as a laser source due to their size and weight. In this presentation, the continuous etch characteristics of Pd and AlGaN/GaN superlattice for the fabrication of blue laser diodes were investigated by using inductively coupled $CHF_3$ and $Cl_2$ -based plasma. The GaN laser diode samples were grown on the sapphire (0001) substrate using a metal organic chemical vapor deposition system. A Si-doped GaN layer was grown on the substrate, followed by growth of LD structures, including the active layers of InGaN/GaN quantum well and barriers layer, as shown in other literature [2], and the palladium was used as a p-type ohmic contact metal. The etch rate of AlGaN/GaN superlattice (2.5/2.5 nm for 100 periods) and n-GaN by using $Cl_2$ (90%)/Ar (10%) and $Cl_2$ (50%)/$CHF_3$ (50%) plasma chemistry, respectively. While when the $Cl_2$/Ar plasma were used, the etch rate of AlGaN/GaN superlattice shows a similar etch rate as that of n-GaN, the $Cl_2/CHF_3$ plasma shows decreased etch rate, compared with that of $Cl_2$/Ar plasma, especially for AlGaN/GaN superlattice. Furthermore, it was also found that the Pd which is deposited on top of the superlattice couldn't be etched with $Cl_2$/Ar plasma. It was indicating that the etching step should be separated into 2 steps for the Pd etching and the superlattice etching, respectively. The etched surface of stacked Pd/superlattice as a result of 2-step etching process including Pd etching ($Cl_2/CHF_3$) and SLs ($Cl_2$/Ar) etching, respectively. EDX results shows that the etched surface is a GaN waveguide free from the Al, indicating the SLs were fully removed by etching. Furthermore, the optical and electrical properties will be also investigated in this presentation. In summary, Pd/AlGaN/GaN SLs were successfully etched exploiting noble 2-step etching processes.

  • PDF

Laser-Induced Direct Copper Patterning Using Focused $Ar^+$ Laser Beam (집속 아르곤 이온 레이저 빔을 이용한 레이저 유도 직접 구리 패터닝)

  • Lee, Hong-Kyu;Lee, Kyoung-Cheol;Ahn, Min-Young;Lee, Cheon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.11
    • /
    • pp.969-975
    • /
    • 2000
  • Laser direct writing of micro-patterned copper lines has been achieved by pyrolytic decomposition of copper formate films (Cu(HCOO)$_2$.4$H_2O$), as a metallo-organic precursor, using a focused CW Ar$^{+}$ laser beam (λ=514nm) on PCB boards and glass substrates. The linewidth and thickness of the lines wee investigated as a functin of laser power and scan speed. The profiles of the lines were measured by scanning electron microscope (SEM), surface profiler ($\alpha$-step) and atomic force measured by scanning electron microscope (SEM), surface profiler ($\alpha$-step) and atomic force microscopy (AFM). The electrical resistivities of the patterned lines were also investigated as a function of laser parameters using probe station and semiconductor analyzer. We compared resistivities of the patterned copper lines with these of the Cu bulk. Resistivities decreased due to changes in morphology and porosity of the deposit, which were about 3.8 $\mu$$\Omega$cm and 12$\mu$$\Omega$cm on PCB and glass substrates after annealing at 30$0^{\circ}C$ for 5 minutes.s.

  • PDF

Measurement of electron density of atmospheric pressure Ar plasma jet by using Michelson interferometer

  • Lim, Jun-Sup;Hong, Young June;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.195.1-195.1
    • /
    • 2016
  • Currently, as Plasma application is expanded to the industrial and medical industrial, low temperature plasma applications became important. Especially in medical and biology, many researchers have studied about generated radical species in atmospheric pressure low temperature plasma directly adapted to human body. Therefore, so measurement their plasma parameter is very important work and is widely studied all around world. One of the plasma parameters is electron density and it is closely relative to radical production through the plasma source. some kinds of method to measuring the electron density are Thomson scattering spectroscopy and Millimeter-wave transmission measurement. But most methods have very expensive cost and complex configuration to composed of experiment system. We selected Michelson interferometer system which is very cheap and simple to setting up, so we tried to measuring electron density by laser interferometer with laser beam chopping module for measurement of temporal phase difference in plasma jet. To measuring electron density at atmospheric pressure Ar plasma jet, we obtained the temporal phase shift signal of interferometer. Phase difference of interferometer can occur because of change by refractive index of electron density in plasma jet. The electron density was able to estimate with this phase difference values by using physical formula about refractive index change of external electromagnetic wave in plasma. Our guiding laser used Helium-Neon laser of the centered wavelength of 632 nm. We installed chopper module which can make a 4kHz pulse laser signal at the laser front side. In this experiment, we obtained more exact synchronized phase difference between with and without plasma jet than reported data at last year. Especially, we found the phase difference between time range of discharge current. Electron density is changed from Townsend discharge's electron bombardment, so we observed the phase difference phenomenon and calculated the temporal electron density by using phase shift. In our result, we suggest that the electron density have approximately range between 1014~ 1015 cm-3 in atmospheric pressure Ar plasma jet.

  • PDF

Growth and characterization of amorphous GaN film using a pulsed-laser ablation (펄스 레이저 어블레이션을 이용한 비정질 GaN박막의 성장 및 특성분석)

  • ;;Naoto Koshizaki
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.1
    • /
    • pp.33-36
    • /
    • 2004
  • Amorphous GaN film was deposited using a laser ablation of the highly densified GaN target. Through the surface morphological and compositional analysis of films deposited under various laser energies and Ar gas pressures, the film deposited under the pressure of 10 Pa were found to be amorphous GaN with the smooth surface. In particular, the film at 200 mJ/pulse showed the enhanced crystallinity and stoichiometric composition, compared with those of the films at relatively lower laser energy. The strong band-gap emission at 2.8 eV was observed from amorphous GaN film in the room temperature photoluminescence spectra, showing the highest efficiency in the film at 200 mJ/pulse under 10 Pa.