• Title/Summary/Keyword: $Amyloid-{\beta}$

Search Result 436, Processing Time 0.024 seconds

Cognitive improvement effects of Momordica charantia in amyloid beta-induced Alzheimer's disease mouse model (여주의 amyloid beta 유도 알츠하이머질환 동물 모델에서 인지능력 개선 효과)

  • Sin, Seung Mi;Kim, Ji Hyun;Cho, Eun Ju;Kim, Hyun Young
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.3
    • /
    • pp.299-307
    • /
    • 2021
  • Accumulation of amyloid beta (Aβ) and oxidative stress are the most common reason of Alzheimer's disease (AD). In the present study, we investigated the cognitive improvement effects of butanol (BuOH) fraction from Momordica charantia in Aβ25-35-induced AD mouse model. To develop an AD mouse model, mice were received injection of Aβ25-35, and then orally administered BuOH fraction from M. charantia at doses of 100 and 200 mg/kg/day during 14 days. In the T-maze and novel object recognition test, administration of BuOH fraction from M. charantia L. at doses of 100 and 200 mg/kg/day improved spatial ability and novel object recognition by increased explorations of novel route and new object. In addition, BuOH fraction of M. charantia-administered groups improved learning and memory abilities by decreased time to reach hidden platform in Morris water maze test. Oral administration of BuOH fraction from M. charantia significantly inhibited lipid peroxidation and nitric oxide levels in the brain, liver, and kidney compared with Aβ25-35-induced control group. These results indicated that BuOH fraction of M. charantia improved Aβ25-35-induced cognitive impairment by attenuating oxidative stress. Therefore, M. charantia could be useful for protection from Aβ25-35-induced cognitive impairment.

Inhibition of ${\beta}-amyloid_{1-40}$ Peptide Aggregation and Neurotoxicity by Citrate

  • Park, Yong-Hoon;Kim, Young-Jin;Son, Il-Hong;Yang, Hyun-Duk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.4
    • /
    • pp.273-279
    • /
    • 2009
  • The accumulation of ${\beta}$-amyloid (A${\beta}$) aggregates is a characteristic of Alzheimer's disease (AD). Furthermore, these aggregates have neurotoxic effects on cells, and thus, molecules that inhibit A${\beta}$ aggregate formation could be valuable therapeutics for AD. It is well known that aggregation of A${\beta}$ depends on its hydrophobicity, and thus, in order to increase the hydrophilicity of A${\beta}$, we considered using citrate, an anionic surfactant with three carboxylic acid groups. We hypothesized that citrate could reduce hydrophobicity and increase hydrophilicity of A${\beta}_{1-40}$ molecules via hydrophilic/electrostatic interactions. We found that citrate significantly inhibited A${\beta}_{1-40}$ aggregation and significantly protected SH-SY5Y cell line against A${\beta}_{1-40}$ aggregates-induced neurotoxicity. In details, we examined the effects of citrate on A${\beta}_{1-40}$ aggregation and on A${\beta}_{1-40}$ aggregates-induced cytotoxicity, cell viability, and apoptosis. Th-T assays showed that citrate significantly inhibited A${\beta}_{1-40}$ aggregation in a concentration-dependent manner (Th-T intensity: from 91.3% in 0.01 mM citrate to 82.1% in 1.0 mM citrate vs. 100.0% in A${\beta}_{1-40}$ alone). In cytotoxicity and viability assays, citrate reduced the toxicity of A${\beta}_{1-40}$ in a concentration-dependent manner, in which the cytotoxicity decreased from 107.5 to 102.3% as compared with A${\beta}_{1-40}$ aggregates alone treated cells (127.3%) and the cell viability increased from 84.6 to 93.8% as compared with the A${\beta}_{1-40}$ aggregates alone treated cells (65.3%). Furthermore, Hoechst 33342 staining showed that citrate (1.0 mM) suppressed A${\beta}_{1-40}$ aggregates-induced apoptosis in the cells. This study suggests that citrate can inhibit A${\beta}_{1-40}$ aggregation and protect neurons from the apoptotic effects of A${\beta}_{1-40}$ aggregates. Accordingly, our findings suggest that citrate administration should be viewed as a novel neuroprotective strategy for AD.

Distinctive contribution of two additional residues in protein aggregation of Aβ42 and Aβ40 isoforms

  • Dongjoon Im;Tae Su Choi
    • BMB Reports
    • /
    • v.57 no.6
    • /
    • pp.263-272
    • /
    • 2024
  • Amyloid-β (Aβ) is one of the amyloidogenic intrinsically disordered proteins (IDPs) that self-assemble to protein aggregates, incurring cell malfunction and cytotoxicity. While Aβ has been known to regulate multiple physiological functions, such as enhancing synaptic functions, aiding in the recovery of the blood-brain barrier/brain injury, and exhibiting tumor suppression/antimicrobial activities, the hydrophobicity of the primary structure promotes pathological aggregations that are closely associated with the onset of Alzheimer's disease (AD). Aβ proteins consist of multiple isoforms with 37-43 amino acid residues that are produced by the cleavage of amyloid-β precursor protein (APP). The hydrolytic products of APP are secreted to the extracellular regions of neuronal cells. Aβ 1-42 (Aβ42) and Aβ 1-40 (Aβ40) are dominant isoforms whose significance in AD pathogenesis has been highlighted in numerous studies to understand the molecular mechanism and develop AD diagnosis and therapeutic strategies. In this review, we focus on the differences between Aβ42 and Aβ40 in the molecular mechanism of amyloid aggregations mediated by the two additional residues (Ile41 and Ala42) of Aβ42. The current comprehension of Aβ42 and Aβ40 in AD progression is outlined, together with the structural features of Aβ42/Aβ40 amyloid fibrils, and the aggregation mechanisms of Aβ42/Aβ40. Furthermore, the impact of the heterogeneous distribution of Aβ isoforms during amyloid aggregations is discussed in the system mimicking the coexistence of Aβ42 and Aβ40 in human cerebrospinal fluid (CSF) and plasma.

Proteomic analysis reveals that the protective effects of ginsenoside Rb1 are associated with the actin cytoskeleton in β-amyloid-treated neuronal cells

  • Hwang, Ji Yeon;Shim, Ji Seon;Song, Min-Young;Yim, Sung-Vin;Lee, Seung Eun;Park, Kang-Sik
    • Journal of Ginseng Research
    • /
    • v.40 no.3
    • /
    • pp.278-284
    • /
    • 2016
  • Background: The ginsenoside Rb1 (Rb1) is the most abundant compound in the root of Panax ginseng. Recent studies have shown that Rb1 has a neuroprotective effect. However, the mechanisms underlying this effect are still unknown. Methods: We used stable isotope labeling with amino acids in cell culture, combined with quantitative mass spectrometry, to explore a potential protective mechanism of Rb1 in ${\beta}$-amyloid-treated neuronal cells. Results: A total of 1,231 proteins were commonly identified from three replicate experiments. Among these, 40 proteins were significantly changed in response to Rb1 pretreatment in ${\beta}$-amyloid-treated neuronal cells. Analysis of the functional enrichments and protein interactions of altered proteins revealed that actin cytoskeleton proteins might be linked to the regulatory mechanisms of Rb1. The CAP1, CAPZB, TOMM40, and DSTN proteins showed potential as molecular target proteins for the functional contribution of Rb1 in Alzheimer's disease (AD). Conclusion: Our proteomic data may provide new insights into the protective mechanisms of Rb1 in AD.

Study on pathology of Alzheimer's disease, trends and future strategy for research (치매의 병리(病理), 연구동향(硏究動向)과 향후(向後) 연구전략(硏究戰略)에 대(對)한 고찰(考察))

  • Oh, Young-Sun;Kim, Sung-Hoon
    • Journal of Haehwa Medicine
    • /
    • v.8 no.1
    • /
    • pp.793-825
    • /
    • 1999
  • For the development of drugs for alzheimer,s disease, the study was done to review the oriental pathology, clinical data, recent trends for research and strategy for future study. The results were as follows: 1. The medical term Chi-dsi implying alzheimer,s disease was referred for the first time in a medical book, Hwatasheneubijeon written by Hwa-Ta and its differentiation and treatment were studied more in Ming or Ching dynasties. Chi-dai can be differentated as weak(虛) syndrome and Shi(實) syndrome. This can be caused by deficiencies of renal Yin, renal Yang, cardiac Yin and hepatic blood, while that by deficiencies of pathological fluid(痰飮) and clotted blood(瘀血). 2. Dementia can be roughly classified as alzheimer's disease and multi-infarct disease. Its causes were known to be cholinergic transmitter, C-peptide, amyloid-${\beta}$, apolipoprotein, APP(amyloid precursor protein), TGF, MMP-9 and free radical. 3. In Korea experimental studies were chiefly done for the elimataion of C-peptide, amyloid-${\beta}$, apolipoprotein, APP for alzheimer's disease, for the development of drug inhibiting degerative change following CVA and loss of memory and also administrative measure was done by support of government. 4. Drugs of dimentia developed so far were Chi-Dai dan, extracts from aloe, mushroom, green tea, Ganoderma and also folic acid, vitamin C, DHEA and silk amino acid were reported to be effective in dimenta. 5. Future strategic research had better be done on dementia-inducing factors such as acetylcholine, C-peptide, amyloid-${\beta}$, apolipoprotein, APP, TGF, MMP-9 and free radical, development of animal model for dimentia, clinical study, epidemiology, nursing and administrative studies and also consortium for dimentia research should be formed so that repeated investment be avoided.

  • PDF

Neuroprotective effects of three flavonoids from Acer okamotoanum against neurotoxicity induced by amyloid beta in SH-SY5Y cells

  • Ji Hyun Kim;Sanghyun Lee;Eun Ju Cho
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.227-237
    • /
    • 2022
  • Amyloid beta (Aβ) is produced from an amyloid precursor protein by the activation of the amyloidogenic pathway, and it is widely known to cause Alzheimer's disease (AD). In this study, we investigated the neuroprotective effects of three flavonoids, quercitrin, isoquercitrin, and afzelin, from Acer okamotoanum against Aβ-induced neurotoxicity in SH-SY5Y neuronal cells. Aβ25-35 treatments resulted in decreased cell viability and increased levels of nuclei condensation and fragmentation. However, an isoquercitrin treatment dose-dependently increased cell viability and decreased nuclei condensation and fragmentation levels. SH-SY5Y cells treated with Aβ25-35 showed increased reactive oxygen species (ROS) production compared to that from cells not treated with Aβ25-35. However, treatment with the three flavonoids significantly inhibited ROS production compared to an Aβ25-35-treated control group, indicating that the three flavonoids blocked neuronal oxidative stress. For a closer examination of the neuroprotective mechanisms, we measured the expressions of the non-amyloidogenic pathway-related proteins of a disintegrin and metalloprotease 10 (ADAM10) and the tumor necrosis factor-α converting enzyme (TACE). An isoquercitrin treatment enhanced the expressions of ADAM10 compared to the control group. In addition, the three flavonoids activated the non-amyloidogenic pathway via the upregulation of TACE. In conclusion, we demonstrated neuroprotective effects of three flavonoids from A. okamotoanum, in particular isoquercitrin, on neurotoxicity by the regulation of the non-amyloidogenic pathway in Aβ25-35-treated SH-SY5Y cells. Therefore, we suggest that flavonoids from A. okamotoanum may have some potential as therapeutics of AD.

Protective Effects of Hemerocallis Fulva Extracts on Amyloid $\beta$-Protein-Induced Death in Neuronal Cells (아밀로이드 베타 단백질에 의해 유도된 신경세포 독성에 대한 원추리의 억제 효과 탐색)

  • Kim Eun-Sook;Choi Soo-Jin;Ryu Beung-Ho;Choi Jin-Ho;Oh Myung-Sok;Park Woo-Jin;Choi Young-Whan;Paik Do-Hyeon;Ha Kwon-Chul;Kang Dae-Ook;Cho Yong-Kweon;Park Ki-Tae;Moon Ja-Young
    • The Journal of Korean Medicine
    • /
    • v.27 no.2 s.66
    • /
    • pp.122-133
    • /
    • 2006
  • Objectives : The amyloid $\beta$-protein ($A\beta$) is the principal component of the senile plaques characteristic of Alzheimer's disease (AD) and elicits a toxic effect on neurons in vitro and in vivo. Many environmental factors including antioxidants and proteoglycans modify $A{\beta}toxicity$. In this study, we have investigated the protective effects of water- and organic solvent-extracts of Hemerocallis fulva root fractions pre-extracted with methanol on $A\beta$-induced oxidative cell death in cultured rat pheochromocytoma (PC12) cells. Methods : For this study, we used MTT reduction assay for detection of protective effects of water- and organic solvent-extracts of Hemerocallis fulva root fractions pre-extracted with methanol on $A{\beta}_{25-35}$-induced cytotoxicity to PC12 cells. We also used cell-based $\beta$-secretase assay system to investigate the inhibitory effect of water- and organic solvent-extracts of Hemerocallis fulva root on $\beta$-secretase activity. Results : We previously reported that methanol extracts of Hemerocallis fulva root strongly attenuated cytotoxicity induced by the three $A\beta$ fragments ($A{\beta}_{25-35},\;A{\beta}_{1-42}\;A{\beta}_{1-43}$) to both SK-N-MC and PC12 cells. In the present study, we found that butanol-, ethylacetate-, chloroform-, and water-extracts of Hemerocallis fulva root fractions pre-extracted with methanol had strong protective effects against $A{\beta}_{25-35}$-induced cytotoxicity to PC12 cells and inhibitory potency to $\beta$-secretase activity. Conclusion : These results suggest that butanol-, ethylacetate-, chloroform-, and water-extracts of Hemerocallis fulva root fractions pre-extracted with methanol may contain the protective component(s) against $A\beta$-induced cell death in PC12 cells as well as inhibitory component(s) to $\beta$-secretase activity.

  • PDF

β-Secretase (BACE1) Purification by Refolding Method and Complex with Hispidin

  • Lim, Ji-Hong;Lee, Bo Ram;Park, Hee Won;Hong, Bum Soo;Lim, Beong Ou;Kim, Young Jun
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.6
    • /
    • pp.553-559
    • /
    • 2014
  • Alzheimer's disease (AD) is a devastating neurodegenerative disease that represents the most common form of dementia among the elderly population. The deposition of aggregated ${\beta}$-amyloid ($A{\beta}$) senile plaques in the human brain is a classic observation in the neuropathology of AD, yet an understanding of the mechanism of their formation remains elusive. $A{\beta}$ is formed through endoproteolysis of the amyloid precursor protein (APP) by ${\beta}$-secretase (BACE1, ${\beta}$-site APP-cleaving enzyme) and ${\gamma}$-secretase. In this study, BACE1 protein was successfully over-expressed, purified, and refolded and utilized in a binding study with hispidin. We developed a simpler refolding method using a urea gradient and size-exclusion gel filtration to purify an active BACE1 protein variant, in larger quantities than that reported previously, and measured the binding affinity of hispidin to the BACE1 protein variant through isothermal titration calorimetry.

Multiple Recurrent Cerebral Hemorrhages Related to Cerebral Amyloid Angiopathy with Arterial Hypertension

  • Jung, Jae-Hyun;Shin, Dong-Ah;Gong, Tae-Sik;Kwon, Chang-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.39 no.6
    • /
    • pp.447-450
    • /
    • 2006
  • Cerebral amyloid angiopathy[CAA] is characterized by the deposition of amyloid ${\beta}-protein$ in the walls of small to medium-sized arteries of the leptomeninges and cerebral cortex. While often asymptomatic, CAA can develop into intracerebral hemorrhage facilitated by arterial hypertension. We report the case of a 52-year-old man with CAA and arterial hypertension who developed recurrent cerebral hemorrhages on three different occasions and in multiple non-overlapping loci over a period of nine years. Based on our findings, we recommend brain biopsies for all patients undergoing evacuation of multiple recurrence or atypical pattern intracerebral hemorrhages.

Preparation of Alzheimers Animal Model and Brain Dysfunction Induced by Continuous $\beta$-Amyloid Protein Infusion

  • Akio Itoh;Kiyofumi Yamada;Kim, Hyoung-Chun;Toshitaka Nabeshima
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.47-57
    • /
    • 2001
  • Alzheimer's disease (AD) is the most common cause of dementia in the elderly, and its pathology is characterized by the presence of numerous numbers of senile plaques and neurofibrillary tangles. Several genetic and transgenic studies have indicated that excess amount of $\beta$-amyloid protein (A$\beta$) is produced by mutations of $\beta$TEX>$\beta$-amyloid precursor protein and causes learning impairment. Moreover, $A\beta$ has a toxic effect on cultured nerve cells. To prepare AD model animals, we have examined continuous (2 weeks) infusion of $A\beta$ into the cerebral ventricle of rats. Continuous infusion of $A\beta$ induces learning impairment in water maze and passive avoidance tasks, and decreases choline acetyltransferase activity in the frontal cortex and hippocampus. Immunohistochemical analysis revealed diffuse depositions of $A\beta$ in the cerebral cortex and hippocampus around the ventricle. Furthermore, the nicotine-evoked release of acetylcholine and dopamine in the frontal cortex/hippocampus and striatum, respectively, is decreased in the $A\beta$-infused group. Perfusion of nicotine (50 $\mu\textrm{M}$) reduced the amplitude of electrically evoked population spikes in the CA1 pyramidal cells of the control group, but not in those of the $A\beta$-infused group, suggesting the impairment of nicotinic signaling in the $A\beta$-infused group. In fact, Kd, but not Bmax, values for [$^3H$] cytisine binding in the hippocampus significantly increased in the $A\beta$-infused rats. suggesting the decrease in affinity of nicotinic acetylcholine receptors. Long-term potentiation (LTP) induced by tetanic stimulations in CA1 pyramidal cells, which is thought to be an essential mechanism underlying learning and memory, was readily observed in the control group, whereas it was impaired in the $A\beta$-infused group. Taken together, these results suggest that $A\beta$ infusion impairs the signal transduction mechanisms via nicotinic acetylcholine receptors. This dysfunction may be responsible, at least in part, for the impairment of LTP induction and may lead to learning and memory impairment. We also found the reduction of glutathione- and Mn-superoxide dismutase-like immunoreactivity in the brains of $A\beta$-infused rats. Administration of antioxidants or nootropics alleviated learning and memory impairment induced by $A\beta$ infusion. We believe that investigation of currently available transgenic and non-transgenic animal models for AD will help to clarify the pathogenic mechanisms and allow assessment of new therapeutic strategies.

  • PDF