• Title/Summary/Keyword: $Al_2O_3

Search Result 6,304, Processing Time 0.032 seconds

Fabrication of$Al_2O_3/Fe$ composite by reaction sintering (반응소결법에 의한 $Al_2O_3/Fe$ 복합재료 제조)

  • 김송희;윤여범
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.185-190
    • /
    • 1999
  • An $Al_2O_3/Fe$ composite was synthesized through the double stage processes by a reaction sintering which requires simple process and equipments but provides near-net-shape, a reduction/oxidation process for 5 hrs at $650^{\circ}C$ was followed by sintering at $1200^{\circ}C$ to form an $Al_2O_3/Fe$ composite. The composite processed through the double stage sintering are mainly consists of $\alpha$-Fe and ${\alpha}Al_2O_3$ with minor amount of $FeAl_2O_4$, a spinnel structure which is known to prevent Fe from filling up the pores and good contact with $Al_2O_3/Fe$ particles.

  • PDF

A Study on the Transparent Glass-Ceramics On Al2O3-SiO2 System (투명 결정화 유리에 관한 연구 - $Al_2O_3-SiO_2$계에 관하여)

  • 박용완;김용욱
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.3
    • /
    • pp.223-231
    • /
    • 1992
  • CaO and ZnO were added to Al2O3-SiO2 binary system respectively as flux, then ZrO2 and TiO2 were applied as nucleating agent to these CaO-Al2O3-SiO2 and ZnO-Al2O3-SiO2 ternary system glass. The transparency could not be kept in CaO-Al2O3-SiO2 system glass, whereas the transparent glass-ceramics were prepared in ZnO-Al2O3-SiO2 system glass containing ZrO2 as the nucleating agent. At this time the optimum heating temperatures for the nucleation and the crystal growth were 78$0^{\circ}C$ and 97$0^{\circ}C$. The sizes of the precipitated crystals in the transparent glass-ceramics were below 0.1 ${\mu}{\textrm}{m}$, and their light transmissibilities were more than 80%.

  • PDF

Ettect of Sodium Gluconate on the Hydration of 3CaO.$Al_2O_3$(I)-Adsorption Behavior- (3CaO.$Al_2O_3$의 수화반응에 미치는 글루콘산나트륨읨 영향(I) -흡착거동-)

  • 김창은;이승헌;유종석;최진호
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.2
    • /
    • pp.38-42
    • /
    • 1986
  • The adsorption behavior of 3CaO.$Al_2O_3$-sodium gluconate-$H_2O$ system by measuring adsorp-tion isotherm DTA and IR sepctra. The adsorbed amount of sodium gluconate on 3CaO.$Al_2O_3$ is exceedingly larger than 3CaO.$SiO_2$ and portland cement. From the DAT experiment the formation of complex is observed by the characteristic exothermic peak of the complex at 45$0^{\circ}C$ It is now strong deduced that the chemical bonding between gluconate anion and 3CaO.$Al_2O_3$ should be coordinative due to the complex formation on the surface 3CaO.$Al_2O_3$ from the IR spectra of sod-ium gluconate only and 3CaO.$Al_2O_3$ -sodium gluconate-$H_2O$.

  • PDF

Al2O3/Al Composites Fabricated by Reaction between Sintered SiO2 and Molten Al (실리카 소결체와 용융 알루미늄과의 반응에 의한 $Al_2$O$_3$/Al 복합체의 제조)

  • 정두화;배원태
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.923-932
    • /
    • 1998
  • Al2O3/Al composites were produced by displacement reaction method which was carried out by imm-ersing the sintered silica preform which was prepared form fused silica powder in molten aluminu. an ac-tivation energy of 94kJ/mole was calculated from Al-SiO2 reaction data in 1000-130$0^{\circ}C$ temperature range With increase of reaction temperature the alumina particle in the Al2O3/Al composites produced with pur metal Al showed grain growth and the growth of alumina particle in Al2O3/Al composite produced by using of Mg contained Al alloy was inhibited. The flexural strength of Al2O3/Al composites produced at 100$0^{\circ}C$ showed the highest value as 393 MPa. Flexural strength of the composite fabricated at 85$0^{\circ}C$ showed higher deviation than that of the composite produced at above 100$0^{\circ}C$ Low flexural strength of the composite fa-bricated at 120$0^{\circ}C$ due to the growth of pore and alumina particle size. The hardness of composites de-pended on alumina content in Al2O3/Al composite decreased with increasing of aluminium content in case the same alumina content and increased with increasing of silicon content in composite.

  • PDF

Preparation and Electrical Conductivity of $\beta$-$Al_2O_3$ ($\beta$-$Al_2O_3$의 제조 및 전기전도도)

  • 송효일;김응수;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.3
    • /
    • pp.1-8
    • /
    • 1986
  • The preparation and electrical conductivity of $\beta$-$Al_2O_3$ are investigated as a function of $Na_2O$ content from the-oretical composition of $\beta$-$Al_2O_3$ to that of $\beta$"-$Al_2O_3$. $\beta$-$Al_2O_3$ $\beta$"$Al_2O_3$$\alpha$-Al2O3 and ${\gamma}$-NaAlO2 phases appear in the calcined powder at 125$0^{\circ}C$ for 2 hours. The majoity phase is $\beta$-$Al_2O_3$ in sintered specimens at 155$0^{\circ}C$ and 1$650^{\circ}C$ for 30 mins respectively and ${\gamma}$-4NaAlO_2$ phase also exists when Na2O content is over 10.39w/o ${\gamma}$-4NaAlO_2$ phase does not affect the grain growth of $\beta$-$Al_2O_3$ in sintering at 155$0^{\circ}C$ but acts as a reactive liquid for the abnormal grain growth of $\beta$-$Al_2O_3$in sintering at 1$650^{\circ}C$ The electrical conduction of $\beta$-$Al_2O_3$is predominated by 4Na^+$ ion. Contribution of ionic con-ductivity to total conductivity is gradually decreased with increasing temperature at given oxygen pressure and to -tal conductivity is increased by positive hole due to interstitial oxygen with increasing oxygen pressure.

  • PDF

Synthesis and Properties of $Al_2O_3-SiC$ Composites from Alkoxides II. Synthesis of Coated Type $Al_2O_3-SiC$ Composite Powders (알콕사이드로부터 $Al_2O_3-SiC$ 복합재료의 제조 및 특성 II. 피복형 $Al_2O_3-SiC$ 복합분말의 합성)

  • 이홍림;김규영
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.3
    • /
    • pp.243-249
    • /
    • 1993
  • Coated type Al2O3-SiC composite powders were synthesized by surface modification method. Transformation temperature to $\alpha$-Al2O3 of Al2O3 monolith was 115$0^{\circ}C$ whereas increased to 1200, 1250, 130$0^{\circ}C$ with increment of SiC content to 5, 15, 25wt%. Transformation temperature to $\alpha$-Al2O3 was lowered by $\alpha$-Al2O3 seeding. FTIR data analysis and electron micrographs showed that Al2O3 particles were effectively coated on SiC particles.

  • PDF

Study on the Resistor Formation using an $Al_2O_3$ Etch-Stop Layer in DRAM (DRAM에서 $Al_2O_3$를 식각 정지막으로 이용한 레지스터 형성에 관한 연구)

  • Park, Jong-Pyo;Kim, Gil-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.153-156
    • /
    • 2005
  • 원자층 증착 (atomic layer deposit : ALD) 방식으로 증착한 $Al_2O_3$의 건식식각 특성을 연구하였다. 전자 싸이클로트론 공진 (electron cyclotron resonance : ECR) 방식의 건식식각장치에서 source power, bias power, 압력 그리고 $Cl_2$ 가스를 변수로 하여 $Al_2O_3$의 식각속도와 Poly-Si 의 $Al_2O_3$에 대한 선택비를 측정하였다. bias power가 감소할수록 그리고 압력이 증가할수록 $Al_2O_3$의 식각속도는 감소하였고 Poly-Si 의 $Al_2O_3$에 대한 선택비는 증가하였다. 이 특성을 이용하여 TiN/$Al_2O_3$/Poly-Si 구조의 캐패시터와 Periphery 회로영역의 레지스터를 $Al_2O_3$를 식각 정지막으로 이용하여 구현하였다.

  • PDF

High-temperature corrosion properties of Al2O3 + (Fe2O3, Al, Cr and Si) mixed sintering materials (Al2O3 + (Fe2O3, Al, Cr and Si) 소결 복합재료의 고온 부식 특성)

  • Kim, Min-Jeong;Won, Seong-Bin;Bong, Seong-Jun;Lee, Dong-Bok;Son, In-Jin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.170-171
    • /
    • 2012
  • $Fe_2O_3$, Al, Cr과 Si 분말을 고 에너지 볼 밀링해서 나노분말을 제조한 후 고주파유도 가열 활성 연소합성 장치로 1분 이내의 짧은 시간에 합성 및 소결한 $Al_2O_3+4.65(Fe_{0.43}Cr_{0.17}Al_{0.323}Si_{0.077})$, $Al_2O_3$ + 5.33 ($Fe_{0.375}Cr_{0.11}Al_{0.3}Si_{0.075}$), $Al_2O_3$ + 6.15 ($Fe_{0.325}Cr_{0.155}Al_{0.448}Si_{0.072}$), $Al_2O_3$ + 3.3 ($Fe_{0.6}Cr_{0.3}Al_{0.6}$) 소결체 시편을 $700^{\circ}C$의 온도에서 100시간 동안 공기 중에서 산화 및 $N_2-H_20-H_2S$ 혼합 가스 내에서 황화 부식을 실시하였다. 그 결과 산화 및 황화 부식 후에 ${\alpha}-Al_2O_3$가 표면에 생성되어 보호 피막으로 작용하여 우수한 내식성을 보였다.

  • PDF

A Study on the Preparation and Sinterability of MgO-Doped $Al_2O_3$ Powders by SprayPyrolysis Method (분무열분해법에 의한 MgO 첨가 $Al_2O_3$ 분체합성 및 소결성에 관한 연구)

  • 박정현;조경식;송규호
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.4
    • /
    • pp.501-512
    • /
    • 1990
  • Al2O3 and 0.25wt% MgO-doped Al2O3 powders were made from the alcohol solution of Al(NO3)3.9H2O and Mg(NO3)2.6H2O by spray pyrolysis method. Each powder was prepared at 900 and 100$0^{\circ}C$. Powders prepared at 90$0^{\circ}C$ were amorphous phase, but prepared at 100$0^{\circ}C$ wre mainly ${\gamma}$-Al2O3 crystalline form. Particle size of the MgO-doped Al2O3 powders was in the range of 0.2-2${\mu}{\textrm}{m}$, but undooped powders shwoed comparatively wider range of particle size. All the powders prepared at 900 and 100$0^{\circ}C$ were transformed to $\alpha$-Al2O3 crystalline form by calcination at 110$0^{\circ}C$ for 1hr. Each powder was sintered at 1600, 1650 and 1$700^{\circ}C$ for 2hrs. MgO-doped Al2O3 body sintering at 1$650^{\circ}C$ showed 99% of relative density but undooped Al2O3 showed 95% of relative density, even sintered at higher temperature of 1$700^{\circ}C$.

  • PDF

Synthesis and Phase Relations of Potassium-Beta-Aluminas in the Ternary System K2O-MgO-Al2O3 (K2O-MgO-Al2O3 3성분계에서 K+-β/β"-Al2O3의 합성 및 상관계)

  • Ham, Choul-Hwan;Lim, Sung-Ki;Lee, Chung-Kee;Yoo, Seung-Eul
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1086-1091
    • /
    • 1999
  • $K^+-{\beta}/{\beta}"-Al_2O_3$ in the ternary system $K_2O-MgO-Al_2O_3$ was directly synthesized by solid state reaction. The phase formation and phase relation were carefully investigated in relation to starting composition, calcining temperature and time, and dispersion medium. The optimal synthetic condition was also examined for the formation of ${\beta}"-Al_2O_3$ phase with a maximum fraction. As a composition range, the mole ratio of $K_2O$ to $Al_2O_3$ was changed from 1:5 to 1:6.2 and the amount of MgO used as a stabilizer was varied from 4.2 wt % to 6.3 wt %. The calcining temperature was selected between $1000^{\circ}C$ and $1500^{\circ}C$. At $1000^{\circ}C$, the ${\beta}/{\beta}"-Al_2O_3$ phases began to form resulted from the combining of ${\alpha}-Al_2O_3$ and $KAlO_2$ and increased with temperature rising. All of ${\alpha}-Al_2O_3$ phase disappeared to be homogenized to the ${\beta}/{\beta}"-Al_2O_3$ phase at $1200^{\circ}C$. Near the temperature at $1300^{\circ}C$, the fraction of ${\beta}"-Al_2O_3$ phase showed a maximum value with the composition of $K_{1.67}Mg_{0.67}Al_{10.33}O_{17}$. At temperatures above $1300^{\circ}C$, the fraction of ${\beta}"-Al_2O_3$ phase decreased gradually owing to $K_2O$ loss caused by a high potassium vapor pressure, and the appropriate calcining time was about 5 hours. Acetone was more effective than distilled water as a dispersion medium for milling and mixing.

  • PDF