• Title/Summary/Keyword: $Al_2O_3/Ni$ composite

Search Result 45, Processing Time 0.035 seconds

TEM Microstructure of Al2O3/Ni Nanocomposites by Electroless Deposition (무전해코팅법으로 제조한 Al2O3/Ni 나노 Composite의 TEM 미세조직)

  • 한재길;이재영;김택수;이병택
    • Journal of Powder Materials
    • /
    • v.10 no.3
    • /
    • pp.195-200
    • /
    • 2003
  • Ni coated $Al_2O_3$ composite was successfully Prepared by the electroless deposition Process. The average size of Ni particles coated on the $Al_2O_3$ matrix powder was about 20 nm. It was hard to find any reaction compound as an impurity at interface between $Al_2O_3$ and Ni particles after sintering. The characterization of microstructure crystal structure and fracture behavior of the sintered body were investigated using XRD, TEM and Victors hardness tester, and compared with those of the sintered $Al_2O_3$ monolithic body. Many dislocations were observed in the Ni phase due to the difference of thermal expansion coefficient between $Al_2O_3$ and Ni phase, and no observed microcracks at their $Al_2O_3$ and Ni interface. In the $Al_2O_3$/Ni composite, the main fracture mode showed a mixed fracture with intergranular and transgranuluar type having some ,surface roughness. The fracture toughness was slightly increased due to the plastic deformation mechanism of Ni phase in the $Al_2O_3$/Ni composite.

Mechanical Properties of Ni Films and $Ni-Al_2O_3$ Composite Films Fabricated by Electroplating (전기도금법으로 제조한 Ni 박막과 $Ni-Al_2O_3$ 복합박막의 기계적 성질)

  • Jun S. W.;Won H. J.;Lee K. Y.;Lee J. H.;Byun J. Y.;Oh T. S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.259-265
    • /
    • 2005
  • Characteristics of electroplated Ni films and $Ni-Al_2O_3$ composite films, such as yield strength, fracture elongation, and $Al_2O_3$ content, were evaluated as a function of electroplating current density. $Al_2O_3$ content was $11.48\~11.64\;vol\%$ for $Ni-Al_2O_3$ composite films electroplated at $5\~20\;mA/cm^2$, and decreased to $8.41\;vol\%$ at $30\;mA/cm^2$ $Ni-Al_2O_3$ possessed yield strengths higher than those of Ni films. Especially, $Ni-Al_2O_3$ fabricated at $5\;mA/cm^2$ exhibited $50\%$ improved yield strength. Fracture elongations of Ni and $Ni-Al_2O_3$ decreased with increasing the electroplating current density. $Ni-Al_2O_3$ electroplated at $5\;mA/cm^2$ exhibited more uniform dispersion of $Al_2O_3$ and higher yield strength and larger fracture elongation than the composite films processed at other current densities.

  • PDF

Microstructural Changes of NiCrAlY/ZrO$_2$-Y$_2$O$_3$ Composite Coatings By Oxidation (NiCrAlY/ZrO$_2$-Y$_2$O$_3$ 복합코팅의 산화에 따른 조직관찰)

  • 박기범;박진오;이동복
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.2
    • /
    • pp.101-106
    • /
    • 2002
  • The microstructural changes of $NiCrAlY/ZrO_2$-$Y_2$$O_3$ composite coatings that were manufactured by air-plasma-spraying were investigated using XRD and SEM/EDS. The as-sprayed microstructure consisted of (Ni,Cr)-rich regions, ($ZrO_2$-$Y_2$$O_3$)-rich regions, and $Al_2$$O_3$-rich layers that were formed during spraying owing to the oxidation of Al in NiCrAlY. During oxidation between 900 and $1100^{\circ}C$ in air, Cr in the (Ni,Cr)-rich regions diffused toward the $Al_2$$O_3$-rich layers, and oxidized to be dissolved in $A1_2$$O_3$-rich layers. The oxidation of Ni in the (Ni,Cr)-rich regions was less distinct, except at the outer surface of the coating.

Fraccture Behavior of Recation Squeeze Cast ($AI_20_3{\cdot}SiO_2+Ni$)/Al Hybrid Metal Matrix Composites (반응 용탕단조한(AI203 . SIO2+Ni)/Al하이브리드 금속복합재료의 파괴거동 특성)

  • 김익우;김상석;박익민
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.67-70
    • /
    • 2000
  • Mechanical properties of (10%$AI_20_3{\cdot}SiO_2$+5%Ni)/Al hybrid composites fabricated by the reaction squeeze casting were compared with those of (15%$AI_20_3{\cdot}SiO_2$)/Al composites. Intermetallic compound formed by reaction between molten aluminum and reinforcing powder was uniformly distributed in the Al matrix. These intermetallic compounds were identified as $Al_3$NI using EDS and X-ray diffraction analysis. Microhardness and flexural strength of hybrid composites were higher than that of (15%$AI_20_3{\cdot}SiO_2$)/Al Composite. In-Situ fracture tests were Conducted on (15%$AI_20_3{\cdot}SiO_2$)/Al Composites and (10%$AI_20_3{\cdot}SiO_2$+5%Ni)/Al hybrid composites to identify the microfracture process. It was identified from the in-situ fracture test of (10%$AI_20_3{\cdot}SiO_2$+5%Ni)/Al composites, microcracks were initiated mainly at the short fiber / matrix interfaces. As the loading was continued, the crack propagated mainly along the separated interfacial regions and the well developed shear bands. It was identified from the in-situ fracture test of (10%$AI_20_3{\cdot}SiO_2$+5%Ni)/Al hybrid composites, microcracks were initiated mainly by the short fiber/matrix interfacial debonding. The crack proceeded mainly through the intermetallic compound clusters

  • PDF

Electrodeposition of Ni-W/Al2O3 Nano-Composites and the Influence of Al2O3 Incorporation on Mechanical and Corrosion Resistance Behaviours

  • M. Ramaprakash;R. Nivethida;A. Muthukrishnan;A. Jerom Samraj;M. G. Neelavannan;N. Rajasekaran
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.377-387
    • /
    • 2023
  • Ni-W/Al2O3 nano-composites were electrodeposited on mild steel substrate for mechanical and corrosion resistance applications. This study focused on the preparation of Ni-W/Al2O3 nano-composite coating with various quantity of Al2O3 incorporations. The addition of Al2O3 in the electrolytes were varied from 1-10 g/L in electrolytes and the Al2O3 incorporation in Ni-W/Al2O3 nano-composite coatings were obtained from 1.82 to 13.86 wt.%. The incorporation of Al2O3 in Ni-W alloy matrix influenced the grain size, surface morphology and structural properties were observed. The distributions of Al2O3 particle in alloy matrix were confirmed using electron microscopy (FESEM and TEM) and EDAX mapping analysis. The crystal structure informations were studied using X-ray diffraction method and it confirms that the deposits having cubic crystal structure. The better corrosion rate (0.87 mpy) and microhardness (965 HV) properties were obtained for the Ni-W/Al2O3 nano-composite coating with 13.86 wt.% of Al2O3 incorporations.

Catalytic CO2 Methanation over Ni Catalyst Supported on Metal-Ceramic Core-Shell Microstructures (금속-세라믹 코어-쉘 복합체에 담지된 Ni 금속 촉매를 적용한 CO2 메탄화 반응 특성연구)

  • Lee, Hyunju;Han, Dohyun;Lee, Doohwan
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.154-162
    • /
    • 2022
  • Microstructured Al@Al2O3 and Al@Ni-Al LDH (LDH = layered double hydroxide) core-shell metal-ceramic composites are prepared by hydrothermal reactions of aluminum (Al) metal substrates. Controlled hydrothermal reactions of Al metal substrates induce the hydrothermal dissolution of Al ions at the Al-substrate/solution interface and reconstruction as porous metal-hydroxides on the Al substrate, thereby constructing unique metal-ceramic core-shell composite structures. The morphology, composition, and crystal structure of the core-shell composites are affected largely by the ions in the hydrothermal solution; therefore, the critical physicochemical and surface properties of these unique metal-ceramic core-shell microstructures can be modulated effectively by varying the solution composition. A Ni/Al@Al2O3 catalyst with highly dispersed catalytic Ni nanoparticles on an Al@Al2O3 core-shell substrate was prepared by a controlled reduction of an Al@Ni-Al LDH core-shell prepared by hydrothermal reactions of Al in nickel nitrate solution. The reduction of Al@Ni-Al LDH leads to the exolution of Ni ions from the LDH shell, thereby constructing the Ni nanoparticles dispersed on the Al@Al2O3. The catalytic properties of the Ni/Al@Al2O3 catalyst were investigated for CO2 methanation reactions. The Ni/Al@Al2O3 catalyst exhibited 2 times greater CO2 conversion than a Ni/Al2O3 catalyst prepared by conventional incipient wetness impregnation and showed high structural stability. These results demonstrate the high effectiveness of the design and synthesis methods for the metal-ceramic composite catalysts derived by hydrothermal reactions of Al metal substrates.

Hot Corrosion of NiCrAlY(ZrO2-Y2O3) Heat Resistant Composite Coatings for Gas Turbines (가스터빈용 NiCrAlY/(ZrO2-Y2O3) 내열복합코팅의 고온 용융염 부식)

  • Lee, Jae Ho;Lee, Changhee;Lee, Dong Bok
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.506-513
    • /
    • 2010
  • The composite coatings of $(ZrO_2-8Y_2O_3)$/(Ni-22Cr-10Al-1Y) were prepared by the air plasma spraying method. They consisted of (Ni,Cr)-rich regions,$(ZrO_2-Y_2O_3)$-rich regions, and $Al_2O_3$-rich regions that were formed by oxidation of Al from (Ni-22Cr-10Al-1Y) during spraying. The coatings corroded at 800 and $900^{\circ}C$ in NaCl-$Na_2SO_4$ molten salts up to 50 hr. Ni, Cr and Al oxidized to NiO, $Cr_2O_3$ and ${\alpha}-Al_2O_3$, respectively. These oxides and $(ZrO_2-Y_2O_3)$ were dissolved off into the molten salts during hot corrosion, which resulted in the ever-lasting corrosion of the composite coatings. Chromium diffused out from the (Ni,Cr)-rich regions and oxidized to $Cr_2O_3$, which was most frequently found as surface scales. Aluminum retained in the (Ni,Cr)-rich regions were similarly diffused out.

Processing of Nano-Sized Metal Alloy Dispersed $Al_2O_3$ Nanocomposites

  • Oh, Sung-Tag;Seok Namkung;Lee, Jai-Sung;Kim, Hyoung-Seop;Tohru Sekino
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.157-162
    • /
    • 2001
  • An optimum route to fabricate the ferrous alloy dispersed $Al_2O_3$ nanocomposites such as $Al_2O_3$/Fe-Ni and $Al_2O_3$/Fe-Co with sound microstructure and desired properties was investigated. The composites were fabricated by the sintering of powder mixtures of $Al_2O_3$ and nano-sized ferrous alloy, in which the alloy was prepared by solution-chemistry routes using metal nitrates powders and a subsequent hydorgen reduction process. Microstructural observation of reduced powder mixture revealed that the Fe-Ni or Fe-Co alloy particles of about 20 nm in size homogeneously surrounded $Al_2O_3$, forming nanocomposite powder. The sintered $Al_2O_3$/Fe-Ni composite showed the formation of Fe$Al_2O_4$ phase, while the reaction phases were not observed in $Al_2O_3$/Fe-Co composite. Hot-pressed $Al_2O_3$/Fe-Ni composite showed improved mechanical properties and magnetic response. The properties are discussed in terms of microstructural characteristics such as the distribution and size of alloy particles.

  • PDF

Fabrication and Properties of Reaction Squeeze Cast ($Al_2O_3{\cdot}SiO_2+Ni$)/Al Hybrid Metal Matrix Composites (반응 용탕단조한($Al_2O_3{\cdot}SiO_2+Ni$)/Al 하이브리드 금속복합재료의 제조 및 특성)

  • Kim, Sang-Suk;Park, Ik-Min;Kim, Sung-Joon;Choi, Il-Dong
    • Journal of Korea Foundry Society
    • /
    • v.17 no.4
    • /
    • pp.338-346
    • /
    • 1997
  • Mechanical properties of ($10%Al_2O_3{\cdot}SiO_2+5%Ni$)/Al hybrid composites fabricated by the reaction squeeze casting were compared with those of ($15%Al_2O_3{\cdot}SiO_2$)/Ai composites. Al-Ni intermetallic compounds ($10{\sim}20 {\mu}m$) formed by the reaction between nickel powder and molten aluminum were uniformly distributed in the Al matrix. These intermetallic compounds were identified as $Al_3Ni$ using X-ray diffraction analysis and they resulted in beneficial effects on room and high temperature strength and wear resistance. Microhardness values of ($10%Al_2O_3{\cdot}SiO_2+5%Ni$)/Al hybrid composite were greater by about 100Hv than those of ($15%Al_2O_3{\cdot}SiO_2$)/Al composite. Wear resistance of ($10%Al_2O_3{\cdot}SiO_2+5%Ni$)/Al hybrid composites was superior to that of ($15%Al_2O_3{\cdot}SiO_2$)/Al composites regardless of the applied load. While tensile and yield strength of ($10%Al_2O_3{\cdot}SiO_2+5%Ni$)/Al hybrid composites were greater at room temperature and $300^{\circ}C$, strength drop at high temperature was much smaller in hybrid composites.

  • PDF

Effect of Ultrasonic Process of Electroless Ni-P-Al2O3 Composite Coatings

  • Yoon, Jin-Doo;Koo, Bon-Heun;Hwang, Hwan-Il;Seo, Sun-Kyo;Park, Jong-Kyu
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.315-323
    • /
    • 2021
  • In general, surface treatments of electroless Ni-P coating are extensively applied in the industry due to their excellent properties for considerable wear resistance, hardness, corrosion resistance. This study aims to determine the effect of ultrasonic conditions on the morphology, alumina content, roughness, hardness, and corrosion resistance of electroless Ni-P-Al2O3 composite coatings. The characteristics were analyzed by Energy-dispersive X-ray spectroscopy (EDX), x-ray diffractions (XRD), and atomic force microscopy (AFM), etc. In this study, the effect of ultrasonic condition uniformly distributed alumina within Ni-P solution resulting in a smoother surface, lower surface roughness. Furthermore, the corrosion resistance behavior of the coating was analyzed using tafel polarization curves in a 3.5 wt.% NaCl solution at 25 ℃. Under ultrasonic, Al2O3 content in Ni-P composite solution increased from 0.5 to 5.0 g/L, Al2O3 content at 3.0 g/L was showed a significantly enhanced corrosion resistance. These results suggested that ultrasonic condition was an effective method to improve the properties of the composite coating.