• Title/Summary/Keyword: $Al_2O_3$-SiC

Search Result 1,188, Processing Time 0.038 seconds

Processing and properties of $Al_{2}O_{3}/SiC$ nanocomposites by polycarbosilane infiltration

  • Jung-Soo Ha;Chang-Sung Lim;Chang-Sam Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.2
    • /
    • pp.80-86
    • /
    • 2002
  • $Al_{2}O_{3}/SiC$ nanocomposites were made by infiltrating partially sintered alumina bodies with polycarbosilane (PCS) solutions, which is a SiC polymer precursor, with pressureless sintering. The SiC content, densification, phases, strength, and microstructure were investigated with the processing parameters such as PCS solution concentration and heat treatment condition for PCS pyrolysis and sintering. The results were compared with those for pure alumina and nanocomposite samples made by the existing polymer precursor route (i.e. the PCS addition process). The SiC contents of up to 1.5 vol% were obtained by the PCS infiltration. PCS pyrolysis, followed by air heat treatment, was needed before sintering to avoid a cracking problem and to attain a densification as high as 98 % of theoretical. The nanocomposites exhibited significantly higher strength than pure alumina and those prepared by the PCS addition process despite larger grain size. Besides $\alpha-Al_{2}O_{3}/SiC$ and $\beta-SiC$ phases, mullite was present a little in the nanocomposites, which resulted from the reaction of $SiO_{2}$ in the pyrolysis product of PCS with the $Al_{2}O_{3}$ matrix during sintering. The nanocomposites had intagranular particles believed to be SiC, which is a typical feature of $Al_{2}O_{3}/SiC$ nanocomposites.

Effect of $Al_2O_3$ on Hot-Press of ${\alpha}-SiC$ and Mechanical Properties (알루미나의 첨가가 ${\alpha}-SiC$의 가압소결 및 기계적 성질에 미치는 영향)

  • 이수영;고재웅;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.7
    • /
    • pp.561-567
    • /
    • 1991
  • Submicron ${\alpha}-SiC$ powder with $Al_2O_3$ addition was hot-pressed under the controlled heating and pressurizing schedule. $SiO_2$ layer on ${\alpha}-SiC$ powder was effective for the sintering of ${\alpha}-SiC$ powder when $Al_2O_3$ was used as an additive. Applying of pressure under the controlled schedule accelerated the rearrangment of SiC grains, yielding 98% of theoretical density of SiC even at $1900^{\circ}C$. Flexural strength of the specimen containing 2 wt% $Al_2O_3$ was increased as increasing the hot-pressing temperature up to $2050^{\circ}C$ and maximum value was 800 MPa, while the flexural strength of the specimen containing 10 wt% $Al_2O_3$ was decreased as increasing the hot-pressing temperature above $2000^{\circ}C$ due to the formation of continuous grain boundary phase. Fracture toughness of the specimens was in the range of $3.5~4.5\;MNm^{-3/2}$ regardless of the amount of $Al_2O_3$ addition.

  • PDF

Effect of In Situ YAG on Properties of the Pressureless-Sintered SiC-$ZrB_2$ Electroconductive (상압소결(常壓燒結)한 SiC-$ZrB_2$ 도전성(導電性) 복합체(複合體)의 특성(特性)에 미치는 In Situ YAG의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun;Lee, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1230-1231
    • /
    • 2008
  • The effect of content of $Al_2O_3+Y_2O_3$ sintering additives on the densification behavior, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressureless-sintered for 2 hours at 1,700[$^{\circ}C$] temperatures with an addition of $Al_2O_3+Y_2O_3$(6:4 mixture of $Al_2O_3$ and $Y_2O_3$) as a sintering aid in the range of 8${\sim}$20[wt%]. Phase analysis of $SiC-ZrB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $ZrB_2$ and In Situ YAG($Al_5Y_3O_{12}$). The relative density, flexural strength, Young's modulus and vicker's hardness showed the highest value of 89.01[%], 81.58[Mpa], 31.437[GPa] and 1.34[GPa] for $SiC-ZrB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature respectively. Abnormal grain growth takes place during phase transformation from ${\beta}$-SiC into ${\alpha}$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites. In this paper, it is convinced that ${\beta}$-SiC based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

  • PDF

Properties of the $\beta-SiC-TiB_2$ Composites with $Al_2O_3+Y_2O_3$ additives ($Al_2O_3+Y_2O_3를 첨가한 {\beta}-SiC-TiB_2$ 복합체의 특성)

  • Yim, Seung-Hyuk;Shin, Yong-Deok;Ju, Jin-Young;Yoon, Se-Won;Song, Joon-Tae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.7
    • /
    • pp.394-399
    • /
    • 2000
  • The mechanical and electrical properties of pressed and annealed $\beta-SiC-TiB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of $Al_2O_3+Y_2O_3$. Phase analysis of composites by XRD revealed $\alpha$-SiC(6H), TiB2, and (Al5Y3O12). Reaction between Al2O3 and $Y_2O_3$ formed YAG but the relative density decreased with increasing $Al_2O_3+Y_2O_3$ contents. The Flexural strength showed the value of 458.9 MPa for composites added with 4 wt% $Al_2O_3+Y_2O_3$ additives at room temperatures. Owing to crack deflection and crack bridging, the fracture toughness showed 6.2, 6.0 and 6.6 MPa.m1/2 for composites added with 4, 8 and 12 wt% Al2O3+Y2O3 additives respectively at room temperature. The resistance temperature coefficient showed the value of $3.6\times10^{-3},\; 2.9\times10^{-3}\; and\; 3.0\times10^{-3} /^{\circ}C$$^{\circ}C$ for composite added with 4, 8 and 12 wt% $Al_2O_3+Y_2O_3$additives respectively at room temperature. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $25^{\circ}C\; to\; 700^{\circ}$.

  • PDF

Fabrication of Aluminum Alloy Composites Reinforced with SiC whisker an $Al_2O_3-SiO_2$ Short Fiber by Squeeze Casting (용탕단조에 의한 $Al_2O_3-SiO_2$ 단섬유 및 SiC whisker강화 알루미늄 합금기 복합재료의 제조)

  • Hong, Sung-Kil;Yun, Jung-Yul;Choi, Jung-Chul
    • Journal of Korea Foundry Society
    • /
    • v.17 no.1
    • /
    • pp.28-35
    • /
    • 1997
  • SiC whisker and $Al_2O_3-SiO_2$ short fiber reinforced AC8A, AC8B and AC8B(J) marix composites were fabricated by squeeze casting method. Preform deformation, change of reinforcement volumefraction and formation of macro-segregation in two composites were investigated by using micro Vickers hardness test, analysis of macro and micro structures with OM, SEM and EDAX. $Al_2O_3-SiO_2$ short fiber preform manufactured with 5% $SiO_2$ binder in this study was considerably deformed and cracked, nevertheless, the short fibers were distributed homogeneously in the composites. In SiC whisker reinforced composites, on the other hand, preform deforming and cracking were not occurred, however, macro segregation zone formed along the infiltration routes by interface reaction during infiltration of molten metal into the preform was observed at center-low area in the composites. The decrease of hardness in the macro segregation zone resulted from the depletion of Si and Mg atoms.

  • PDF

Effects of In Situ YAG on Properties of the Pressurless Annealed Sic-$TiB_2$ Electroconductive Ceramic Composites (무가압 어닐드한 Sic-$TiB_2$ 전도성 복합체의 특성에 미치는 In Situ YAG의 영향)

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.808-815
    • /
    • 2008
  • The composites were fabricated 61[vol.%] ${\beta}$-SiC and 39[vol.%] $TiB_2$ powders with the liquid forming additives of 8, 12, 16[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid by pressureless annealing at 1650[$^{\circ}C$] for 4 hours. The present study investigated the influence of the content of $Al_2O_3+Y_2O_3$ sintering additives on the microstructure, mechanical and electrical properties of the pressureless annealed SiC-$TiB_2$ electroconductive ceramic composites. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the pressureless annealed SiC-$TiB_2$ electroconductive ceramic composites. Phase analysis of SiC-$TiB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), ${\beta}$-SiC(3C), $TiB_2$, and In Situ YAG($Al_2Y_3O_{12}$). The relative density of SiC-$TiB_2$ composites was lowered due to gaseous products of the result of reaction between SiC and $Al_2O_3+Y_2O_3$. There is another reason which pressureless annealed temperature 1650[$^{\circ}C$] is lower $300{\sim}450[^{\circ}C]$ than applied pressure sintering temperature $1950{\sim}2100[^{\circ}C]$. The relative density, the flexural strength, the Young's modulus and the Vicker's hardness showed the highest value of 82.29[%], 189.5[Mpa], 54.60[Gpa] and 2.84[Gpa] for SiC-$TiB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature. Abnormal grain growth takes place during phase transformation from ${\beta}$-SiC into ${\alpha}$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. The electrical resistivity showed the lowest value of 0.0117[${\Omega}{\cdot}cm$] for 16[wt%] $Al_2O_3+Y_2O_3$ additives at 25[$^{\circ}C$]. The electrical resistivity was all negative temperature coefficient resistance (NTCR) in the temperature ranges from $25^{\circ}C$ to 700[$^{\circ}C$]. The resistance temperature coefficient of composite showed the lowest value of $-2.3{\times}10^{-3}[^{\circ}C]^{-1}$ for 16[wt%] additives in the temperature ranges from 25[$^{\circ}C$] to 100[$^{\circ}C$].

Preparation of Porous $Al_2O_3$-AIN-Mullite and $Al_2O_3$-AIN-SiC

  • Kim, Byung-Hoon;Na, Yong-Han
    • The Korean Journal of Ceramics
    • /
    • v.1 no.3
    • /
    • pp.147-151
    • /
    • 1995
  • Porous composite of $Al_2O_3$ and AIN based mullite and SiC can be prepared by alumium reaction synthesis and atmosphere controllied sintering in order to improve the durability of a gas filter body. The porous $Al_2O_3$-AIN-mullite, which has a strength of 168 kg/$\textrm{cm}^2$ and porosity of 51.59%, could be obtained by stmospheric firing at $1600^{\circ}C$ and the porous $Al_2O_3$-AIN-SiC with a porosity of 33% and strength of 977 kg/$\textrm{cm}^2$, could also be prepared. The average pore size has been changed from 0.2$\mu\textrm{m}$ in a reduction atmosphere and to 2$\mu\textrm{m}$ in an air atmosphere, respectively.

  • PDF

Microwave Thermal Decomposition of CF4 using SiC-Al2O3 (SiC-Al2O3 촉매를 이용한 CF4의 마이크로파 열분해)

  • Choi, Sung-Woo
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1097-1103
    • /
    • 2013
  • Tetrafluoromethane($CF_4$) have been widely used as etching and chemical vapor deposition gases for semiconductor manufacturing processes. $CF_4$ decomposition efficiency using microwave system was carried out as a function of the microwave power, the reaction temperature, and the quantity of $Al_2O_3$ addition. High reaction temperature and addition of $Al_2O_3$ increased the $CF_4$ removal efficiencies and the $CO_2/CF_4$ ratio. When the SA30 (SiC+30wt%$Al_2O_3$) and SA50 (SiC+50wt%$Al_2O_3$) were used, complete $CF_4$ removal was achieved at $1000^{\circ}C$. The $CF_4$ was reacted with $Al_2O_3$ and by-products such as $CO_2/CF_4$ and $AlF_3$ were produced. Significant amount of by-product such as $AlF_3$ was identified by X-ray powder diffraction analysis. It also showed that the ${\gamma}-Al_2O_3$ was transformed to ${\alpha}-Al_2O_3$ after microwave thermal reaction.

Effects of Al2O3-RE2O3 Additive for the Sintering of SiC and the Fabrication of SiCf/SiC Composites (SiC 소결에 미치는 Al2O3-RE2O3 첨가제의 영향과 SiCf/SiC 복합체의 제조)

  • Yu, Hyun-Woo;Raju, Kati;Park, Ji Yeon;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.364-371
    • /
    • 2013
  • The sintering behavior of monolithic SiC is examined using the binary sintering additive of $Al_2O_3$-rare earth oxide ($RE_2O_3$, where RE = Sc, Nd, Dy, Ho, or Yb). Through hot pressing at 20 MPa and $1750^{\circ}C$ for 1 h in an Ar atmosphere for 52 nm fine ${\beta}$-SiC powder added with 5 wt% sintering additive, a SiC density of > 97% is achieved, which indicates the effectiveness of $Al_2O_3-RE_2O_3$ system as a sintering of additive for SiC. Based on this result, 7 wt% of $Al_2O_3-Sc_2O_3$ is tested as an additive system for the fabrication of a continuous SiC fiber-reinforced SiC-matrix composite ($SiC_f$/SiC). Electrophoretic deposition combined with the application of ultrasonic pulses is used to efficiently infiltrate the matrix phase into the voids of $Tyranno^{TM}$-SA3 fabric. After hot pressing, a composite density of > 97% is obtained, along with a maximum flexural strength of 443 MPa.