• Title/Summary/Keyword: $Al_2O_3$-CuO-ZnO

Search Result 161, Processing Time 0.032 seconds

Characterization of Atomic-Layer Deposited ZnSnO Buffer Layer for 18%- Efficiency Cu(In,Ga)Se2 Solar Cells (18% 효율 Cu(In,Ga)Se2 박막태양전지용 ZnSnO 버퍼층의 원자층 증착법 및 분석)

  • Kim, Sun Cheul;Kim, Seung Tae;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.54-60
    • /
    • 2015
  • ZnSnO thin films were deposited by atomic layer deposition (ALD) process using diethyl zinc ($Zn(C_2H_5)_2$) and tetrakis (dimethylamino) tin ($Sn(C_2H_6N)_4$) as metal precursors and water vapor as a reactant. ALD process has several advantages over other deposition methods such as precise thickness control, good conformality, and good uniformity for large area. The composition of ZnSnO thin films was controlled by varying the ratio of ZnO and $SnO_2$ ALD cycles. The ALD ZnSnO film was an amorphous state. The band gap of ZnSnO thin films increased as the Sn content increased. The CIGS solar cell using ZnSnO buffer layer showed about 18% energy conversion efficiency. With such a high efficiency with the ALD ZnSnO buffer and no light soaking effect, AlD ZnSnO buffer mighty be a good candidate to replace Zn(S,O) buffer in CIGSsolar cells.

Cu/ZnO sorbents for the hydrogen station (수소스테이션을 위한 Cu/ZnO 계 탈황제)

  • Jun, ki-Won;Bae, Jong-Wook;Kang, Suk-Hwan;Yoon, Young-Seek;Kim, Myung-Jun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.344-347
    • /
    • 2006
  • 탄화수소 연료(LNG, LPG)를 개질하여 수소를 제조하는 연료 처리 공정 중, 탈황 기술은 촉매의 활성저하 및 전극의 피독을 방지하기 위한 필수 기술이다. 본 연구에서는 도시가스 및 액화석유 가스용 부취제로 사용되는 유기 황화합물(,DMS, THT, TBM)을 제거하기 위한 탈황제로서 Cu/ZnO계 흡착제를 개발하였다. 공침법을 이용하여 흡착제를 제조하여 각 부취제별로 상온 및 고온에서의 흡착탈황 성능을 조사하였으며 또한, 이의 특성분석을 행하였다. $Cu/ZnO/Al_2O_3$ 탈황제는 메탄으로부터 고온에서 TH, DMS, TBM+THT 등의 황화합물들을 매우 효과적으로 제거할 수 있었다. 특히, TBM+THT의 혼합가스에서 TBM에 대해 선택적인 흡착을 보였다. THT 흡착에서 흡착온도가 $300^{\circ}C$ 이상에서는, 흡착과정 동안 황의 상호작용으로 인해 금속황화물이 생성되었다.

  • PDF

Decomposition of Toluene by γ-Al2O3 Catalysts Impregnated with Transition Metal (전이금속을 함침한 γ-Al2O3 촉매의 Toluene 분해)

  • Choi, Sung-Woo;Lee, Chul-Kyu
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.945-951
    • /
    • 2013
  • Alumina-supported catalysts containing different transition metals such as Cu, Cr, Mn, Zn, Co, W were investigated for their activity in the selective oxidation of toluene. Catalytic oxidation of toluene was investigated at atmospheric pressure in a fixed bed flow reactor system over transition metals with $Al_2O_3$ catalyst. The result showed the order of catalytic activities for the complete oxidation of toluene was Mn > Cu> Cr> Co> W> Zn for 5wt.% transition $metals/Al_2O_3$. $Mn/Al_2O_3$ catalysts containing different amount of Mn were characterized by X-ray diffraction spectroscopy for decision of loading amount of metal to alumina. 5 wt.%$Mn/Al_2O_3$ catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of $289^{\circ}C$.

Geochemical Characteristics on Geological Groups of Stream Sediment in the Boseong-Hwasun Area, Korea (보성-화순지역 하상퇴적물에 대한 지질집단별 지구화학적 특성)

  • Park, Young-Seog;Kim, Jong-Kyun
    • Journal of the Korean earth science society
    • /
    • v.32 no.7
    • /
    • pp.707-718
    • /
    • 2011
  • We study the natural background and geochemical characteristics on geological groups of stream sediment in the Boseong-Hwasun area. We collected 186ea stream sediment samples along the primary channels and dried them naturally in laboratory. The contents of major, trace and rare earth elements were determined by XRF, ICP-AES and NAA analysis methods. In order to know the natural background and geochemical characteristics of geological groups, we classified the studied area into granitic gneiss (GGn) area and porphyroblastic gneiss (PGn) area. The contents range of major elements for GGn area is $SiO_2$ 45.5-73.09 wt.%, $Al_2O_3$ 12-20.76 wt.%, $Fe_2O_3$(T) 3.72-8.85 wt.%, $K_2O$ 2.38-4.2 wt.%, MgO 0.75-2.77 wt.%, $Na_2O$ 0.78-1.88 wt.%, CaO 0.27-2.1 wt.%, $TiO_2$ 0.56-1.72 wt.%, $P_2O_5$ 0.06-0.73 wt.% and MnO 0.03-0.95 wt.%, and for PGn area it is $SiO_2$ 43.74-70.71 wt.%, $Al_2O_3$ 11.54-25.05 wt.%, $Fe_2O_3$(T) 3.44-13.46 wt.%, $K_2O$ 2.08-3.86 wt.%, MgO 0.65-2.99 wt.%, $Na_2O$ 0.63-1.7 wt.%, CaO 0.35-2.07 wt.%, $TiO_2$ 0.68-4.17 wt.%, $P_2O_5$ 0.1-0.31 wt.% and MnO 0.07-0.33 wt.%. The contents range of hazard elements for GGn area is Cr 41.7-242 ppm, Co 7.6-25.1 ppm, Ni 12-61 ppm, Cu 10-47 ppm, Zn 48.5-412 ppm, Pb 17-215 ppm, and for PGn area, it is Cr 29.6-454 ppm, Co 5.9-53.7 ppm, Ni 8.7-287 ppm, Cu 6.4-134 ppm, Zn 43.6-370 ppm, Pb 15-37 ppm area. There is a good correlation between Cr and MgO and Co among $Al_2O_3$, $Fe_2O_3$(T), MgO and Ni among $Fe_2O_3$(T), CaO, MgO whereas Cu, Zn and Pb have a low correlation for major elements in GGn area. Generally Cr, Co, Ni, and Cu have a good correlation with major elements, but a low correlation with Zn and Pb in PGn area.

Preparation and Reactivity of Cu-Zn-Al Based Hybrid Catalysts for Direct Synthesis of Dimethyl Ether by Physical Mixing and Precipitation Methods (물리혼합 및 침전법에 의한 DME 직접 합성용 Cu-Zn-Al계 혼성촉매의 제조 및 반응특성)

  • Bang, Byoung Man;Park, No-Kuk;Han, Gi Bo;Yoon, Suk Hoon;Lee, Tae Jin
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.566-572
    • /
    • 2007
  • Two hybrid catalysts for the direct synthesis of DME were prepared and the catalytic activity of these catalysts were investigated. The hybrid catalyst for the direct synthesis of DME was composed as the catalytic active components of methanol synthesis and dehydration. The methanol synthesis catalyst was formed from the precursor contained Cu and Zn, the methanol dehydration catalyst was used ${\gamma}-Al_2O_3$. As PM-CZ+D and CP-CZA/D, Two hybrid catalysts were prepared by physical mixing method (PM-CZ+D) and precipitation method (CP-CZA/D), respectively. PM-CZ+D was prepared by physically mixing methanol synthesis catalyst and methanol dehydration catalyst, CP-CZA/D was prepared by depositing Cu-Zn or Cu-Zn-Al components on ${\gamma}-Al_2O_3$. The crystallinity and the surface morphology of synthesized catalyst were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) to investigate the physical property of prepared catalyst. And BET surface area by $N_2$ adsorption and the surface area of Cu by $N_2O$ chemisorption were investigated about the hybrid catalysts. In addition, catalytic activity of these hybrid catalysts was examined with varying reaction conditions. At that time, the reaction temperature of $250{\sim}290^{\circ}C$, the reaction pressure of 50~70 atm, the $[H_2]/[CO]$ mole ratio of 0.5~2.0 and the space velocity of $1,500{\sim}6,000h^{-1}$ were investigated the catalytic activity. From these results, it was confirmed that the reactivity of CP-CZA/D was higher than that of PM-CZ+D. When the conditions of reaction temperature, pressure, $[H_2]/[CO]$ ratio and space velocity were $260^{\circ}C$, 50 atm and 1.0, $3,000h^{-1}$ respectively, CO conversion using CP-CZA/D hybrid catalyst was 72% and the CO conversion of CP-CZA/D was more than 20% compared with the CO conversion of PM-CZ+D. It was known that Cu surface area of CP-CZA/D hybrid catalyst was higher than that of hybrid PM-CZ+D catalyst using $N_2O$ chemisorption. It was assumed that the catalytic activity was improved because Cu particle of hybrid catalyst prepared by precipitation method was well dispersed.

Adsorptive Removal Properties of Heavy Metal Ions By Soils from the Upper Banbyun Stream (반변천 상류 주변 토양의 중금속 이온 흡착제거 특성)

  • Kim, Younjung;Hwang, Haeyeon;Kim, Yunhoi;Ryu, Sanghoon;Baek, Seungcheol;Seo, Eulwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.2
    • /
    • pp.5-9
    • /
    • 2007
  • This study carried out to investigate the removal capacity of heavy metals such as Cu (II), Zn (II) and Cd (II) dissolved in aqueous solution in the soils collected from Hyeon-Dong (HD), San-seong (SS), Keum-chon (KC) and Keum-Hac (KH) located in the upper Banbyun stream. The pH of all the soils was weak alkali such as 8.8 9.2. According to the analysis of chemical composition of the soils, the amount of $SiO_2$, $AlO_2$ and CaO were similar in all tested soils. However, the amount of $K_2O$, $FeO_3$ and MgO were different from each soil. The XRD measurement with these soils showed that quartz and feldspar were presented in all tested soils, and the distribution of kaoline, illite, montmorillonite, vermiculite and calcite were different from each soil. The results of the removal capacity of heavy metals indicated that all the soils had more than 98% of the removal efficiency of Cu (II), Zn (II) and Cd (II), and among the heavy metals, Cu (II) was removed the most effectively. These results suggested that the soils collected from the upper Banbyun stream have the high removal capacity of heavy metals, and these soils could be used for the banking a river around the abandoned mine area, containing the higher concentrations of heavy metals than the usual stream.

  • PDF

The Treatment Properties of Heavy Metals in Acid Mine Drainage with Micro-bubble and UV/H2O2 Oxidation Process (마이크로버블과 자외선/과산화수소 산화공정을 이용한 광산배수의 중금속 처리 특성)

  • Jung, Yong-Jun;Jung, Jae-Ouk
    • Journal of Environmental Science International
    • /
    • v.26 no.3
    • /
    • pp.303-309
    • /
    • 2017
  • Aeration with low energy micro-bubble generation and $UV/H_2O_2$ processes was introduced to verify the possibility of oxidation treatment for acid mine drainage. During 10 hours of aeration with micro-bubbles, Fe and As concentrations were decreased to 18.1 and 61.8%, respectively, while Cu, Cd, Al were kept at influent concentrations. Other heavy metals such as Mn, Cr, Pb, Zn, and Ni concentrations fluctuated due to the repetition of oxidation and release. Twenty days of aeration indicated the oxidation possibility for Cu, Cd, and Al. With the employment of $UV/H_2O_2$ processes, more than 77% of Cu and Fe removed, whereas slightly more than 30% of Cd and Al removed.

Geochemical Characteristics of Stream Sediments Based on Bed Rocks in the Naju Area, Korea (기반암에 따른 나주지역 하상퇴적물의 지구화학적 특성)

  • Park, Young-Seog;Kim, Jong-Kyun;Jung, Young-Hwa
    • Journal of the Korean earth science society
    • /
    • v.27 no.1
    • /
    • pp.49-60
    • /
    • 2006
  • The purpose of this study is to investigate geochemical characteristics for stream sediments in the Naju area. We collected 139 stream sediments samples from primary channels. Samples were dried slowly in the laboratory and chemical analysis was carried out using XRF. ICP-AES and NAA. In order to investigate geochemical characteristics, the geological groups categorized into granitic gneiss area, schist area, granite area, arenaceous rock area, tuff area, andesite area, and rhyolite area. Average contents of major elements for geological groups are $SiO_2\;58.37{\sim}66.06wt.%,\;Al_2O_3\;13.98{\sim}18.41wt.%,\;Fe_2O_3\;4.09{\sim}6.10wt.%,\;CaO\;0.54{\sim}1.33wt.%,\;MgO\;0.86{\sim}1.34wt.%,\;K_2O\;2.38{\sim}4.01wt.%,\;Na_2O\;0.90{\sim}1.32wt.%,\;TiO_2\;0.82{\sim}1.03wt.%,\;MnO\;0.09{\sim}0.15wt.%,\;P_2O_5\;0.11{\sim}0.18wt.%$. According to the comparison of average contents of major elements, $Al_2O_3\;and\;K_2O$ are higher in granitic gneiss area, $Fe_2O_3,\;CaO,\;P_2O_5$ are higher in tuff area, MgO and $TiO_2$ are higher in andesite area, $Na_2O_$ is higher in rhyolite area, $SiO_2$, and MnO are higher in arenaceous rock area. Average contents of minor and rare earth elements for geological groups are $Ba\;1278{\sim}1469ppm,\;Be\;1.1{\sim}1.5ppm,\;Cu\;18{\sim}25ppm,\;Nb\;25{\sim}37ppm,\;Ni\;16{\sim}25ppm,\;Pb\;21{\sim}28ppm,\;Sr\;83{\sim}155ppm,\;V\;64{\sim}98ppm,\;Zr\;83{\sim}146ppm,\;Li\;32{\sim}45ppm,\;Co\;7.2{\sim}12.7ppm,\;Cr\;37{\sim}76ppm,\;Cs\;4.8{\sim}9.1ppm,\;Hf\;7.5{\sim}25ppm,\;Rb\;88{\sim}178ppm,\;Sc\;7.7{\sim}12.6ppm,\;Zn\;83{\sim}143ppm,\;Pa\;11.3{\sim}37ppm,\;Ce\;69{\sim}206ppm,\;Eu\;1.1{\sim}1.5ppm,\;Yb\;1.8{\sim}4.4ppm$. According to the comparison of average contents of minor and rare earth elements for geological groups, Pb, Li, Cs, Hf, Rb, Sb, Pa, Ce, Eu, and Yb are higher in granitic gneiss area; Ba, Co, and Cr in schist area; Nb, Ni, and Zr in arenaceous rock area; Sr in tuff area: and Be, Cu, V, Sc, and Zn are such in andesite area.

Electron Reflecting Layer with the WO3-ZnS:Cu.Al-PbO-SiO2 System Concerned in Doming Property of Shadow Mask in CRT

  • Kim, Sang-Mun;Cho, Yoon-Lae
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1124-1127
    • /
    • 2002
  • In this paper, we studied the effects of the electron reflection on shadow mask on which the electron reflecting materials with $WO_3-ZnS:Cu.Al-PbO-SiO_2$ system were screen-printed and we evaluated the variation of the electron beam mislanding in CRT. As a result, the green emitted spectra on the electron reflecting layer are observed due to the transformation of the electron energy, when the electron impacted on shadow mask. The beam mislanding is reduced about 40% in comperision with that of CRT made by the conventional method.