• Title/Summary/Keyword: $Al_2O_3$ particles

Search Result 504, Processing Time 0.025 seconds

A Study of Electrochemical Characteristics on Copper Film (Copper 막의 전기화학적 특성에 관한 연구)

  • Han, Sang-Jun;Park, Sung-Woo;Lee, Woo-Sun;Seo, Yong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.603-604
    • /
    • 2006
  • We investigated the effects of oxidizer additive on the performance of Cu-CMP process using commonly used tungsten slurry. According to the CMP removal rates and particle size distribution, and the micro- structures of surface layer as a function of oxidizer contents were greatly influenced by the slurry chemical composition of oxidizers. The difference in removal rate and roughness of copper surface are believed to cause by modification in the mechanical behavior of $Al_{2}O_3$ abrasive particles in CMP slurry.

  • PDF

Precision microdrilling of alumina ceramic substrates by femtosecond laser ablation (펨토초 레이저 어블레이션을 이용한 알루미나 세라믹 기판의 정밀 마이크로 드릴링)

  • Kim, S.H.;Sohn, I.B.;Noh, Y.C.;Lee, J.M.;Jeong, S.H.
    • Laser Solutions
    • /
    • v.11 no.1
    • /
    • pp.25-31
    • /
    • 2008
  • The characteristics of femtosecond laser ablation of $Al_2O_3$ for prescision microfabrication are studied experimentally. Specifically, the process time during femtosecond laser drilling of microholes with $sub-100{\mu}m$ diameter are investigated for varying laser fluence, scan speed and beam path designs like trepanning with continuously changed start points. The accumulation of sub-micrometer size particles within the hole and the deterioration of edge clarity and roundness for decreasing hole diameter are examined and through process optimization the microdrilling with good hole quality is achieved using a femtosecond laser system (repetitionrate 1 kHz, wavelength 785 nm, pulse duration 185 fs)

  • PDF

A Study of Electrochemical Characteristics on Copper Film (Copper 막의 전기화학적 특성에 관한 연구)

  • Han, Sang-Jun;Park, Sung-Woo;Lee, Woo-Sun;Seo, Yong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1269-1270
    • /
    • 2006
  • We investigated the effects of oxidizer additive on the performance of Cu-CMP process using commonly used tungsten slurry. According to the CMP removal rates and particle size distribution, and the micro-structures of surface layer as a function of oxidizer contents were greatly influenced by the slurry chemical composition of oxidizers. The difference in removal rate and roughness of copper surface are believed to cause by modification in the mechanical behavior of $Al_2O_3$ abrasive particles in CMP slurry.

  • PDF

Multi-scale Simulation of Powder Compaction Process and Optimization of Process Parameters (분말가압 성형공정의 멀티스케일 시뮬레이션과 공정변수 최적화)

  • Shim, J.W.;Shim, J.G.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.344-347
    • /
    • 2007
  • For modeling the non-periodic and randomly scattered powder particles, the quasi-random multi-particle array is introduced. The multi-scale process simulation, which enables to formulate a regression model with a response surface method, is performed by employing a homogenization method. The size of ${Al_2}{O_3}$ particle, amplitude of cyclic compaction pressure, and friction coefficient are considered as optimal process parameters. The optimal conditions of process parameters providing the highest relative density are finally found by using the grid search method.

  • PDF

Fatigue Crack Growth Behavior of Short fiber/Particle Hybrid Metal Matrix Composites (단섬유/입자 혼합 금속복합재료의 피로균열진전 거동)

  • Oh K.H.;Jang J. H.;Han K. S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.219-222
    • /
    • 2004
  • The effects of short fiber and particle hybrid reinforcement on fatigue crack propagation behaviors in aluminum matrix composites have been investigated. Single and hybrid reinforced 6061 aluminum containing same 20 $Al_2O_3\;volume\%$ with four different constituent ratios of short fibers and particles were prepared by squeeze casting method and tested to check the near-threshold and stable crack growth behavior. The fatigue threshold of the composites increased with portion of particle contents and showed the improved crack resistance especially in low stress intensity range. Addition of particle instead of short fiber also increased fracture toughness due to increase of inter-reinforcement distance. These increase in both fatigue threshold and fracture toughness eventually affected the fatigue crack growth behavior such that the crack growth curve shift low to high stress intensity factor value. Overall experimental results were shown that particle reinforcement was enhanced the fatigue crack resistance over the whole stress intensity factor range.

  • PDF

Wetting Behavior and Evaporation Characteristics of Nanofluid Droplets on Glass Surfaces (나노유체 액적의 젖음거동 및 증발 특성)

  • Shin, Dong-Hwan;Lee, Seong-Hyuk
    • Journal of ILASS-Korea
    • /
    • v.17 no.1
    • /
    • pp.9-13
    • /
    • 2012
  • This study investigates experimentally evaporation characteristics of nanofluid droplets containing 50 nm alumina($Al_2O_3$) particles and the wettability changes on a hydrophilic glass surfaces. From the captured digital images by using a CMOS camera and a magnifying lens, we examined the effect of particle concentration on droplet evaporation rate which can be indirectly deduced from the measured droplet volumes varying with time. In particular, with the use of a digital image analysis technique, the present study measured droplet perimeters and the contact angles to study the wetting dynamics during evaporating process. In addition, we compared the measured total evaporation time with theoretically estimated values. It was found that as the volume fractions of nanofluid increased, the total evaporation time and the initial contact angles decreased, while the droplet perimeters increased.

Optimization of cutting tool for high speed machining (고속가공을 위한 절삭공구의 최적화)

  • 양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1290-1295
    • /
    • 1988
  • Theoretical considerations in the development of new cutting tool materials for high speed machining is presented. The progressive wear of cutting tools is assumed to consist of the abrasive and solution components as major modes. Theoretical calculations of relative wear rates between various tool materials based on the two modes are possible using their hardness and solubility data. Assuming cementite as the major hard particles in machining steels, relative wear rates of possible tool materials were calculated. The results indicate that $Al_{2}$O$_{3}$ in oxides, HfN in nitrides and HfC in carbides are the optimal tool materials from the view point of mechanical and thermochemical wear resistance. And several methods for improving the fracture toughness of the above tool materials are suggested.

A Study of Electrochemical Characteristics on Copper Film (Copper 막의 전기화학적 특성에 관한 연구)

  • Han, Sang-Jun;Park, Sung-Woo;Lee, Woo-Sun;Seo, Yong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1729-1730
    • /
    • 2006
  • We investigated the effects of oxidizer additive on the performance of Cu-CMP process using commonly used tungsten slurry. According to the CMP removal rates and particle size distribution, and the micro-structures of surface layer as a function of oxidizer contents were greatly influenced by the slurry chemical composition of oxidizers. The difference in removal rate and roughness of copper surface are believed to cause by modification in the mechanical behavior of $Al_{2}O_{3}$ abrasive particles in CMP slurry.

  • PDF

Characterization of Size Distribution and Water Solubility of 15 Elements in Atmospheric Aerosols

  • Park, Jeong-Ho;Sun, Jeong-Min;Park, Kum-Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E1
    • /
    • pp.1-7
    • /
    • 2001
  • The elemental characteristics of atmospheric aerosols were investigated as a function of particle size and water solubility. The aerosol particles were samples at 12 individual size ranges between 0.01 and 30㎛. Collected aerosol particles were separated into both soluble and insoluble components. The concentrations of 15 elements in both components were determined by a PIXE analysis using a 2.0 MeV-proton beam. In general, the mass size distribution of particulate matter was represented as a bimodal distribution. The maximum rations of S in July and December were 5.5 and 3.8 %, and they appeared in the size range of 0.47∼1.17㎛(stage No. 6 or 7) . The ratios of a S at non-separated size were 3.1 and 2.2 % in July and December, respectively, On the other hand, the maximum rations of Si in July and December were 7.0 and 5.4% and they appeared in the size range of 5.1∼30㎛(stage No. 0∼2). The ratios of Si at the non-separated size were 2.1 and 1.8% in July and December, respectively, The mass diameter of 12 elements ranged between 0.59㎛ of S and 3.20 of Fe. More than 90% of atmospheric aerosols consisted of the light elements such as C, N, O, H and Al. The soluble component was dominant in the smaller size range and the insoluble component in the larger size range. Large portions of Si. Ti and Fe existed in insoluble state. By contrast, S, Cl, Ca, Zn and Br were dissolved in water.

Pre-Charged Particle Deposition in an Impactor subjected to an Electric Field (전기장이 형성된 관성 충돌기에서 대전 입자의 거동과 부착 특성에 대한 연구)

  • Park, Hyung-Ho;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.299-310
    • /
    • 1999
  • Effect of electrostatic and inertial forces on the pre-charged particle deposition was theoretically and experimentally studied by introducing the inertia impactor subjected to an electric field. To derive the analytic solution, we assumed that a flow was an ideal stagnation flow, a particle had saturation charges, and the electric field within the test section was uniform. On the other hand, $Al_2O_3$ particle groups were used as the test particles, which mean sizes were $1{\mu}m$, $3{\mu}m$, and $5{\mu}m$. To measure the deposition efficiency, the light scattering method was used. The results showed that the deposition efficiency was minimized at a certain nozzle velocity as increasing the nozzle velocity, only if the electric force was applied. As the electric field strength increased, $Stk_{50}{^{1/2}}$ was decreased, and its decreasing rate was reduced with increasing the flow velocity. Moreover the existence of electric field was against the cut-off performance of the inertia impactor.