• Title/Summary/Keyword: $Al_2O_3$ interlayer

Search Result 35, Processing Time 0.023 seconds

Arsenic removal from artificial arsenic water using CaAl-monosulfate and CaAl-ettringite (CaAl-monosulfate와 CaAl-ettringite를 이용한 인공비소폐수의 비소 제거 연구)

  • Shim, Jae-Ho;Kim, Ki-Baek;Choi, Won-Ho;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.141-148
    • /
    • 2012
  • The objective of this study is to remove arsenate from artificially contaminated wastewater using CaAl-ettringite and CaAl-monosulfate which were synthesized in laboratory. The study was carried on the basis of solidification/stabilization of waste using cement. Monosulfate and ettringite are constituents of cement paste. The CaAl-ettringite has a chemical formula of $Ca_6Al_2O_6(SO_4)_3{\cdot}32H_2O$ and has a needle like morphology. Whereas CaAl-monosulfate $Ca_4Al_2O_6(SO_4){\cdot}12H_2O$ has layered double hydroxide structure (LDH) in which the mainlayer consists of Ca and Al and S as interlayer. Ettringite and monosulfate were synthesized by reaction of tricalcium aluminate and gypsum and hydrating this mixture at elevated temperature. The synthesized mineral were characterized by PXRD and FESEM to ensure purity. It was found that concentrations of As(V) in contaminated water were reduced from initial concentration of 1.335 mmol/L to 0.054 mmol/L and 0.300 mmol/L by CaAl-monosulfate and CaAl-ettringite respectively. The post experimental results of PXRD and FESEM analysis indicate that arsenate removal was by ion exchange.

Transient Liquid Phase Bonding of Ni-Cr Heat Resisted Cast Steel (Ni-Cr계 내열주강의 천이액상 접합)

  • 권영순;신철균;김현식;김환태;김지순;석명진
    • Journal of Powder Materials
    • /
    • v.9 no.3
    • /
    • pp.189-198
    • /
    • 2002
  • In this work, transient liquid phase (TLP) bonding of Ni-Cr heat resisted cast alloy (HP) was investigated. And also the behaviors of the solid particles distributed in the interlayer during TLP bonding were investigated. The MBF-60 and solid particles (Ni, Fe, and $Al_2O_3$ powders respectively) added MBF-60 which will be a liquid phase coexisting with solid particles at the bonding temperature were used as insert metal. The effective and sound bonding was possible by spark plasma sinter-bonding due to the differences of electric resistance between base metal and liquid insert layer which creates high temperature region. During the isothermal solidification, $Al_2O_3$ particles and solid particles of liquid phase sintered insert metal have shown no growth, while Ni and Fe particles grow rapidly. In this TLP bonding using the MBF-60 and distributed Fe, Ni particles as insert materials, the whole isothermal solidification process was dominated by the growth rate of the solid particles distributed in the interlayer.

A study on the diffusion bonding of the $Al_2$O$_3$ ceramics to metal (A$_2$O$_3$세라믹과 Ni-Cr-Mo鋼과의 인서트 合金을 이용한 擴散接合에 關한 硏究)

  • 김영식;박훈종;김정일
    • Journal of Welding and Joining
    • /
    • v.10 no.3
    • /
    • pp.63-72
    • /
    • 1992
  • The joining methods of ceramics to metals which can be expected to obtain high temperature strength are mainly classified into the solid-state diffusion bonding method and the active brazing method. Between these two, the solid-state diffusion bonding method is given attentions as substituting method for active brazing method due to being capable of obtaining higher bonding strength at high temperature and accurate bonding. In this paper, the solid-state diffusion bonding of $Al_{2}$O$_{3}$ ceramics to Ni-Cr-Mo alloy steel (SNCM21) using insert metal was carried out. The insert metal employed in this study was experimentally home-made, Ag-Cu-Ti alloy. Influence of several bonding parameters of $Al_{2}$O$_{3}$SNCM21 joint was quantitatively evaluated by bonding strength test, and microstructural analyses at the interlayer were performed by SEM/EDX. From above experiments, the optimum bonding condition of the solid-state diffusion bonding of $Al_{2}$O$_{3}$/SNCM21 using Ag-Cu-Ti insert metal was determined. Futhermore, high temperature strength and thermal-shock properties of $Al_{2}$O$_{3}$/SNCM21 joint were also examined. The results obtained are as follows. 1. The maximum bonding strength was obtained at the temperature of 95% melting point of insert metal. 2. The high temperature strength of $Al_{2}$O$_{3}$/SNCM21 joint appeared to bemaximum value at test temperature 500.deg.C and the bonding strength with increasingtemperature showed parabolic curve. 3. The strength of thermal-shocked specimens was far deteriorated than those of as-bonded specimens. Especially, water-quenched specimen after heated up to 600.deg. C was directly fractured in quenching.

  • PDF

Interaction study of molten uranium with multilayer SiC/Y2O3 and Mo/Y2O3 coated graphite

  • S.K. Sharma;M.T. Saify;Sanjib Majumdar;Palash K. Mollick
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1855-1862
    • /
    • 2023
  • Graphite crucibles are used for melting uranium and its alloys in VIM furnace. Various coating materials namely Al2O3, ZrO2, MgO etc. are applied on the inner surface of the crucibles using paint brush or thermal spray technique to mitigate U-C interaction. These leads to significant amount of carbon pick-up in uranium. In this study, the attempts are made to develop multilayer coatings comprising of SiC/Y2O3 and Mo/Y2O3 on graphite to study the feasibility of minimizing U-C interaction. The parameters are optimized to prepare SiC coating of about 70㎛ thickness using CVD technique on graphite coupons and subsequently Y2O3 coating of about 250㎛ thickness using plasma spray technique. Molybdenum and Y2O3 layers were deposited using plasma spray technique with 70㎛ and 250㎛ thickness, respectively. Interaction studies of the coated graphite with molten uranium at 1450℃ for 20 min revealed that Y2O3 coating with SiC interlayer provides physical barrier for uranium-graphite interaction, however, this led to the physical separation of coating layer. Y2O3 coating with Mo interlayer provided superior barrier effect showing no degradation and the coatings remained intact after interaction tests. Therefore, the Mo/Y2O3 coating was found to be a promising solution for minimizing carbon pick-up during uranium/uranium alloy melting.

The Synthesis and the Electrochemical Properties of Al Doped $V_2O_5$ (Al이 도핑된 오산화바나듐의 합성 및 전기화학적 특성)

  • Park, Heai-Ku;Joung, Ok-Young;Lee, Man-Ho
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.491-495
    • /
    • 2005
  • Vanadium pentoxide xerogels with a doping ratio of $Al/V_2O_5$ ranging from 0.01 to 0.05 were synthesized by doping Al into $V_2O_5$ xerogel via the sol-gel process. By using the synthesized $Al_xV_2O_5$, the $Li/Al_xV_2O_5$ cells were assembled to investigate the chemical and electrochemical properties. Surface morphology of the $Al_xV_2O_5$ xerogel showed an anisotropic corrugated sheet-like matrix, and the interlayer distance was about $11.5{\AA}$. The IR spectra of the $Al_xV_2O_5$ revealed that the doped Al was coordinated to the vanadyl group in $V_2O_5$. The $Al_xV_2O_5$ xerogels showed enhanced reversibility and energy density compared with the $V_2O_5$ xerogel. The specific capacity of the $Al_{0.05}V_2O_5$ xerogel was more than 200 mAh/g at 10 mA/g discharge rate, and cycle efficiency was about 90% after the 31st cycling test between 1.9 V and 3.9 V.

Gas Permeation Properties of Ethylene Vinyl Acetate/Co-Al Layered Double Hydroxide Nanocomposite Membranes (Ethylene Vinyl Acetate/Co-Al Layered Double Hydroxide 나노복합막의 기체 투과 성질)

  • Kang, Sung-Young;Lee, Hyuu-Kyung
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.290-296
    • /
    • 2010
  • Ethylene vinyl acetate (EVA-28)/Co-Al LDH nanocomposite membranes were prepared by solution intercalation using organically modified LDH. LDH was made organophilic by the intercalation of dodecyl sulfate (DS) anion in the interlayer. The prepared membranes were characterized using XRD, FT-IR and SEM. Gas permeability of EVA/LDH nanocomposite membranes with LDH content of 1, 3, and 5 w% was studied for $O_2$ and $CO_2$ at pressure of 3, 4, and 5 bar. The permeability of $O_2$ and $CO_2$ was minimum for nanocomposite membrane with 1 wt% LDH and increased with increasing LDH content, which is presumably due to aggregation of LDH filler. The selectivity of $CO_2$ for $O_2$ showed the maximum value at 1 wt% of LDH content and decreased thereafter.

Preparation and Characterization of a Layered Organic-inorganic Composite by the Electrophoretic Deposition of Plate-shaped Al2O3 Particles and Electrophoretic Resin (전기영동적층법을 통한 판상 알루미나 입자와 전기영동 수지의 배향 유무기 복합체 제조 및 물성평가)

  • Park, Hee Jeong;Lim, Hyung Mi;Choi, Sung-Churl;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.460-465
    • /
    • 2013
  • Plate-shaped inorganic particles are coated onto a stainless steel substrate by the electrophoretic deposition of a precursor slurry which includes the inorganic particles of $Al_2O_3$ and polymer resin in mixed solvents to mimic the abalone shell structure, which is a composite of plate-shaped inorganic particles and organic interlayer binding materials with a layered orientation. The process parameters of the electrophoretic deposition include the voltage, coating time, and conductivity of the substrate. In addition, the suspension parameters are the particle size, concentration, viscosity, conductivity, and stability. We prepared an organic-inorganic composite coating with a high inorganic solid content by arraying the plate-shaped $Al_2O_3$ particles and electrophoretic resin via an electrophoretic deposition method. We analyzed the effect of the slurry composition and the electrophoretic deposition process parameters on the physical, mechanical and thermal properties of the coating layer, i.e., the thickness, density, particle orientation, Young's modulus and thermogravimetric analysis results.

The In-situ Dressing of CMP Pad Conditioners with Novel Coating Protection

  • Sung, James-C.;Kan, Ming-Chi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1142-1143
    • /
    • 2006
  • Kinik Company pioneered diamond pad conditioners protected by DLC barrier ($DiaShield^{(R)}$ Coating) back in 1999 (Sung & Lin, US Patent 6,368,198). Kink also evaluated Cermet Composite Coating (CCC or $C^3$, patent pending) with a composition that grades from a metallic (e.g. stainless steel) interlayer to a ceramic (e.g. $Al_2O_3$ or SiC) exterior. The metallic interlayer can form metallurgical bond with metallic matrix on the diamond pad conditioner. The ceramic exterior is both wear and corrosion resistant. The gradational design of $C^3$ coating will assure its strong adherence to the substrate because there is no weak boundary between coating and substrate.

  • PDF

A Study on Wettability of Silicate Glasses on the Different Impurities in Alumina Substrates (알루미나의 순도에 따른 알루미나와 실리케이트계 유리와의 젖음성에 관한 연구)

  • 안병국
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.122-128
    • /
    • 1998
  • This investigation was performed to collect fundamental informations concerning the behavior of glass solders on ceramic joining process. The wettability of glasses on two types of alumina was evaluated by sessile drop method. SiO$_2$-CaO-Al$_2$O$_3$system glasses were selected as solder glasses, and alumina that have different purities were used for substrate materials. It is indicated that contact angles of glasses on 99% purity of alumina substrate do not change as increasing time at elevated temperature, however the contact angles on the 92% purity of alumina substrate exhibit the strong time dependency. The time-dependent property on 92% alumina was due to the interlayer reactions occurred between the glass solder and impurities on the substrate.

  • PDF

Adhesion improvement between metal and ceramic substrate by using ISG process (ISG법에 의한 금속과 세라믹기판과의 밀착력 향상)

  • 김동규;이홍로;추현식
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.6
    • /
    • pp.709-716
    • /
    • 1999
  • Ceramic is select for an alternative substrate material for high-speed circuits due to its low-thermal expansion. As, in this study, ceramic was prepared by ISG (interlayer sol-gel) process using metal salts and a metal alkoxide as the starting materials. Generally ceramic substrate is used electroless copper plating for the metallization. But it has been indicate weakely the adhesion strength between the substrate and copper layer. Therefore, this research, using the ISG process on the preparation of homogeneous and possible preparation at law temperature fabricated sol solution. Using of the dip coating method was coated for the purpose of giving the anchoring effect on the coating layer and enhancing the adhesion strength between the $Al_2$O$_3$ substrate and copper layer. This study examined primary the characteristic of the sol making condition and differential thermal analysis (DTA) X-ray diffraction (XRD) were mearsured to identify the crystal phase of heat treatment specimens. The morphology of the coated films were studied by scanning electron microscopy(SEM). As a resurt, XRD analysis was obtained patterns of $\alpha$-cordierite after heat-treatment about 2 hours at $1000^{\circ}C$. SEM analysis could have seen a large number of voids on coated film. The more contants of$ Al_2$$O_3$ Wt% was increased the more voids was advanced. Peel adhesion strength has a maximum in the contants of the TEOS:ANE of 1:0.7 mole%. In this case, adhesion strength has been measured 1150gf, peel adhesion strength were about 10 times more than uncoated of the ceramics film.

  • PDF