• Title/Summary/Keyword: $Al_2O_3$ addition

Search Result 770, Processing Time 0.027 seconds

Designing Materials for Hard Tissue Replacement

  • Nath, Shekhar;Basu, Bikramjit
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.1-29
    • /
    • 2008
  • In last two decades, an impressive progress has been recorded in terms of developing new materials or refining existing material composition/microstructure in order to obtain better performance in biomedical applications. The success of such efforts clearly demands better understanding of various concepts, e.g. biocompatibility, host response, cell-biomaterial interaction. In this article, we review the fundamental understanding that is required with respect to biomaterials development, as well as various materials and their properties, which are relevant in applications, such as hard tissue replacement. A major emphasize has been placed to present various design aspects, in terms of materials processing, of ceramics and polymer based biocomposites, Among the bioceramic composites, the research results obtained with Hydroxyapatite (HAp)-based biomaterials with metallic (Ti) or ceramic (Mullite) reinforcements as well as $SiO_2-MgO-Al_2O_3-K_2O-B_2O_3-F$ glass ceramics and stabilized $ZrO_2$ based bioinert ceramics are summarized. The physical as well as tribological properties of Polyethylene (PE) based hybrid biocomposites are discussed to illustrate the concept on how can the physical/wear properties be enhanced along with biocompatibility due to combined addition of bioinert and bioactive ceramic to a bioinert polymeric matrix. The tribological and corrosion properties of some important orthopedic metallic alloys based on Ti or Co-Cr-Mo are also illustrated. At the close, the future perspective on orthopedic biomaterials development and some unresolved issues are presented.

Development of Epoxy/Boron Nitride Composites for High Heat Dissipation of Metal Copper Clad Laminate (MCCL) (Metal Copper Clad Laminate (MCCL)의 고방열 특성을 위한 Epoxy/BN 복합체 개발)

  • Choi, Ho-Kyoung;Choi, Jae-Hyun;Choi, Bong-Goo;Yoon, Do-Young;Choi, Joong-So
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.64-68
    • /
    • 2020
  • In this study, metal copper clad laminate can be prepared using epoxy composite filled with thermally conductive fillers. In order to improve the thermal conductivity of epoxy composites, it is important factor to form conductive networks through appropriate packing of conductive fillers in epoxy composite matrix and to decrease the amount of thermally resistant junctions involving a epoxy composite matrix layer between adjacent filler units. This is because epoxy has a thermal conductivity of only 0.2-0.3W, so in order to maintain high thermal conductivity, thermally conductive fillers are connected to each other, so that the gap between particles can be reduced to reduce thermal resistance. The purpose of this study is to find way to achieve highly thermally conductive in the epoxy composite matrix filled with Al2O3 and Boron Nitride(BN) filler by filler loading and uniform dispersion. As a results, the use of Al2O3/BN hybrid filler in epoxy matrix was found to be effective in increasing thermal conductivity of epoxy composite matrix due to the enhanced connectivity offered by more continuous thermally conductive pathways and uniform dispersion without interfacial voids in epoxy composite matrix. In addition, surface treatmented s-BN improves the filler dispersion and adhesion between the filler and the epoxy matrix, which can significantly decrease the interfacial thermal resistance and increase the thermal conductivity of epoxy composite matrix.

Exposure Characteristics of Particles during the After-treatment Processes of Aluminum Oxide Fibers and Nickel Powders (산화알루미늄 섬유와 니켈분말 후처리공정에서 입자의 노출특성)

  • Kim, Jong Bum;Kim, Kyung Hwan;Ryu, Sung Hee;Yun, Seong-Taek;Bae, Gwi-Nam
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.2
    • /
    • pp.225-236
    • /
    • 2016
  • Objectives: Nanomaterials have been used in various fields. As use of nanoproducts is increasing, workers dealing with nanomaterials are also gradually increasing. Exposure assessments for nanomaterials have been carried out for protection of worker's health in workplace. Exposure studies were mainly focused on manufacturing processes, but these studies on after-treatment processes such as refinement, weighing, and packing were insufficient. So, we investigated exposure characteristics of particles during after-treatment processes of $Al_2O_3$ fibers and Ni powders. Methods: Mass-production of Ni powder process was carried out in enclosed capture-type canopy hood. In a developing stage, $Al_2O_3$ was handled with a local ventilation unit. Exposure characteristics of particles were investigated for $Al_2O_3$ fiber and Ni powder processes during the periods of 10:00 to 16:00, 20 May 2014 and 13:00 to 16:00, 21 May 2014, respectively. Three real-time aerosol instruments were utilized in exposure assessment. A scanning mobility particle sizer(SMPS, nanoscan, model 3910, TSI) and an optical particle counter(OPC, portable aerosol spectrometer, model 1.109, Grimm) were used to determine the particle size distribution in the size range of 10-420 nm and $0.25-32{\mu}m$, respectively. In addition, a nanoparticle aerosol monitor(NAM, model 9000, TSI) was used to measure lung-deposited nanoparticle surface area. Membrane filters(isopore membrane filter, pore size of 100 nm) were also used for air sampling for the FE-SEM(model S-5000H, Hitachi) analysis using a personal sampling pump(model GilAir Plus by 2.5 L/min, Gilian). Conclusions: For Ni powder after-treatment process, only 27% increase in particle concentration was found during the process. However, for $Al_2O_3$ fiber after-treatment process, significant exposure(1.56-3.34 times) was observed during the process.

Studies on the Production of Artificial Zeolite from Coal Fly Ash and Its Utilization in Agro-Environment

  • Lee, Deog-Bae;Henmi, Teruo;Lee, Kyung-Bo;Kim, Jae-Duk
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.401-418
    • /
    • 2000
  • 1. Production of the artificial zeolite from coal ash Coal fly ash is mainly composed of several oxides including $SiO_2$ and $Al_2O_3$ derived from inorganic compounds remained after burning. As minor components, $Fe_2O_3$ and oxides of Mg, Ca, P, Ti (trace) are also contained in the ash. These components are presented as glass form resulting from fusion in the process of the combustion of coal. In other word, coal ash may refer to a kind of aluminosilicate glass that is known to easily change to zeolite-like materials by hydrothermal reaction. Lots of hot seawater is disposing near thermal power plants after cooling turbine generator periodically. Using seawater in the hydrothermal reaction caused to produce low price artificial zeolite by reduction of sodium hydroxide consumption, heating energy and water cost. As coal ash were reacted hydrothermally, peaks of quartz and mullite in the ash were weakened and disappeared, and new Na-Pl peaks were appeared strengthily. Si-O-Si bonding of the bituminous coal ash was changed to Si-O-Al (and $Fe^{3+}$) bonding by the reaction. Therefore the produced Na-Pl type zeolite had high CEC of 276.7 $cmol^+{\cdot}kg^{-1}$ and well developed molecular sieve structure with low concentration of heavy metals. 2. Utilization of the artificial zeolite in agro-environment The artificial zeolite(1g) could remove 123.5 mg of zinc, 164.7 mg copper, 184.4 mg cadmium and 350.6 mg lead in the synthetic wastewater. The removability is higher 2.8 times in zinc, 3.3 times in copper, 4.7 times in cadmium and 4.8 times in lead than natural zeolite and charcoal powder. When the heavy metals were treated at the ratio of 150 $kg{\cdot}ha^{-1}$ to the rice plant, various growth inhibition were observed; brownish discoloration and death of leaf sheath, growth inhibition in culm length, number of panicles and grains, grain ripening and rice yield. But these growth inhibition was greatly alleviated by the application of artificial zeolite, therefore, rice yield increased $1.1{\sim}3.2$ times according to the metal kind. In addition, the concentration of heavy metals in the brown rice also lowered by $27{\sim}75%$. Artificial Granular Zeolites (AGZ) was developed for the purification of wastewater. Canon exchange capacity was 126.8 $cmol^+{\cdot}kg^{-1}$. AGZ had Na-Pl peaks mainly with some minor $C_3S$ peaks in X-ray diffractogram. In addition, AGZs had various pore structure that may be adhere the suspended solid and offer microbiological niche to decompose organic pollutants. AGZ could remove ammonium, orthophosphate and heavy metals simultaneously. Mixing ratio of artificial zeolite in AGZs was related positively with removal efficiency of $NH_4\;^+$ and negatively with that of $PO_4\;^{3-}$. Root growth of rice seedling was inhibited severely in the mine wastewater because of strong acidity and high concentration of heavy metals. As AGZ(1 kg) stayed in the wastewater(100L) for 4days, water quality turned into safely for agricultural usage and rice seedlings grew normally.

  • PDF

A Study of Properties and Coating Natural Mineral Pumice Powder of in Korea (한국산 천연 광물 부석 파우더 코팅 및 특성에 관한 연구)

  • Kim, In-Young;Noh, Ji-Min;Nam, Eun-Hee;Shin, Moon-Sam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.498-506
    • /
    • 2019
  • This study is based on a coating method that provides utilization value as a micronised powder for cosmetic raw materials using natural minerals buried in Bonghwa, Gyeongsangbuk-do in Korea. The mineral powder name is called Buseok, and chemical name is pumice powder. The results of a study on the efficacy of cosmetics are reported by the development of particulate powder to assess the performance of this powder. First of all, in order to coat the surface of this powder with oil, aluminum hydroxide was coated on the particulate surface and then coated with alkylsilan. In addition, it was coated with vegetable oil to prevent condensation of the powder and increase the dispersion in the oil phase. First; the particle size of pumice powder was from 10 to 50mm having porous holes on the surface of the particles. Second; The components of this powder contained $SiO_2$, $Al_2O_3$, $Fe_2O_3$, MgO, CaO, $K_2O_2$, $Na_2O$, $TiO_2$, $TiO_2$, MnO, $Cr_2O_3$, $V_2O_5$. Third: The particles of this powder have a planetary structure and are reddish-brown with porosity through SEM and TEM analysis. Fourth; the far-infrared radiation rate of this parabolic powder was $0.924{\mu}m$, and the radiative energy was $3.72{\times}102W/m^2$ and ${\mu}m$. In addition, the anion emission is 128 ION/cc, which shows that the coating remains unchanged. Based on these results, it is expected to be widely applied to basic cosmetics such as BB cream, cushion foundation, powderfect, and other color-coordinated cosmetics, sunblock cream, wash-off massage pack as an application of cosmetics. (Small and Medium Business Administration: S2601385)

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

A Study on the Preparation of Alumina Powders from Bauxite by Wet Acid Process and Their Utilization(I) : Preparation of Aluminum Hydrate Gels from Bauxite (Bauxite로부터 습식 산처리법에 의한 알루미나 분체의 제조 및 그 이용에 관한 연구(I) : Bauxite로부터 Aluminum Hydrate Gel의 제조)

  • 박민준;조철구;배원태
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.6
    • /
    • pp.747-754
    • /
    • 1990
  • Aluminum hydrate gels were prepared from the mixtures of bauxite and ammonium sulfate by wet acid process. Optimum conditions for obtaining the maximum yield( 99%) of aluminum hydrates from the same amount of bauxite were confirmed as follows ; 1. Mixing ratio ; addition of 25mole% of ammonium sulfate to 1mole of bauxite. 2. Calcination ; heated at 350℃ for 1hr. 3. Extraction ; leached at 95℃ in 1% H2SO4 for 90min. 4. pH of precipitating solution; slight below 7.0. Amorphous aluminum hydrates were precipitated at the pH lower than 8.5, but the precipitates crystallized to bayerite at the pH was 10. Mean diameter of α-Al2O3 powders which were obtained by calcining the aluminum hydrates was below 0.2㎛, and EDS analysis revealed than SiO2 was it's primary impurity.

  • PDF

Performance Evaluation of Ethanol Blended Hydrogen Peroxide Thrusters (에탄올 블렌딩한 과산화수소 추력기의 성능평가)

  • Lee, Jeong-Sub;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.100-103
    • /
    • 2012
  • The blending method that is an addition of small quantity of fuel was used to increase the performance of green propellant thruster. 90 wt.% hydrogen peroxide as a green propellant was selected, and ethanol was used as a blended fuel. The o/f ratio was chosen as 50 which has higher theoretical performance than 98 wt.% hydrogen peroxide. The chamber temperature of blended hydrogen peroxide was higher than adiabatic chamber temperature of hydrogen peroxide. Therefore, performance can be improved by ethanol blending. Several catalyst and its support were compared to find appropriate catalyst for decomposition and combustion of ethanol blended hydrogen peroxide. As a experimental results, Pt was suitable, but $MnO_2$ had a chamber instability when it was reused. The ${\alpha}-Al_2O_3$ which is high heat-resistant support showed very unstable performance in both Pt and $MnO_2$ catalyst since it has low decomposition performance.

  • PDF

Characterization of Spray-Dried Yttrium Aluminum Garnet Powder

  • Sim, S.M.
    • The Korean Journal of Ceramics
    • /
    • v.1 no.1
    • /
    • pp.35-39
    • /
    • 1995
  • Yttrium aluminum garnet(YAG) powders were synthesized by spray-drying of the hydroxides coprecipitated from a mixture of aqueous solutions of $Al(NO_3)_3.9H_2O \;and\; Y(NO_3)_3.6H_2O$ Phase formation in the powders during heat treatments and their sintering charactristics were investigated. In the powder obtained by washing the hydroxides before spray-drying, a metastable yttrium aluminum hexagonal (YAH) phase was first crystallized and then transformed into YAG as temperature was increased. The formation of YAH was attributed to a deviation in compositions of the particles from the starting composition of YAG. However, the powder prepared without washing step contained a stable yttrium aluminum monoclinic(YAM) phase in addition to YAG due to a large deviation from the starting composition. A powder compact of a single phase YAG was pressureless-sintered for 4 hrs at $1700^{\circ}C$ and the density was 93% of the theoretical density.

  • PDF

Preparation and electrical properties of thick PZT films deposited on alumina substrates with Ag-Pd electrodes and Pt plates by spin-on process (Ag-Pd/알루미나 및 Pt전극에 스핀온 방법으로 제조된 PZT후막의 전기적 특성)

  • Cho, Hyun-Choon;Yoo, Kwang-Soo;Baik, Hion-Suck;M. Troccaz;D. Barbier
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.2
    • /
    • pp.309-314
    • /
    • 1997
  • The electrical properties of thick PZT films deposited on Ag-Pd/$Al_2O_3$ and Pt electrodes were carefully investigated according to the annealing methods and the sub-strates. For electrical properties measurements, silver was deposited on PZT films as top electrode. The crystallogaphic structure of the films was examined by standard X-ray diffraction method to determine which crystalline phase was present. Dielctric constant was measured at 1 kHz, 10 mV by using a HP4284A. The electrical properties of PZT films with 3 wt% PbO addition were not improved. It was also found that the Ag-Pd layer has a good possibility as electrode instead of Pt. It seems clear from the present experiments that the thick PZT films having the good electrical properties can certainly be obtained using spin on technique combined with rapid thermal annealing.

  • PDF