• Title/Summary/Keyword: $Al_2O_3$ Ceramic Dielectric

검색결과 101건 처리시간 0.028초

Glass-Al2O3 복합소재를 원료로 한 LTCC 다층회로 기판의 제조 (Fabrication of LTCC Multi-layer Circuit Board made of Glass-Al2O3 Composites)

  • 곽훈;전형도;김환;이원재;신병철;김일수
    • 한국전기전자재료학회논문지
    • /
    • 제21권6호
    • /
    • pp.509-516
    • /
    • 2008
  • Multi-layer circuit card for semiconductor inspection was fabricated by LTCC technology. After a proper impedance design without electrical interference, ceramic tapes with the composition of $CaO-Al_2O_3-SiO_2-B_2O_3$ glass and $Al_2O_3$ were prepared. The electrode with silver paste printed on the tape. Printed ceramic sheets were then laminated and sintered. Densities and dielectric properties were measured. The microstructure, fracture surface of the region of via and matching state of substrate-electrode were observed. The durability of plated outside electrode were examined by hardness and scratch test.

$Li_2O-Al_2O_3-Ta_2O_5$ 삼성분계에 있어 $LiTaO_3$ 고용체의 구조 및 특성에 관한 연구 (Structure and Properties of $LiTaO_3$ Type Solid Solutions in $Li_2O-Al_2O_3-Ta_2O_5$ Ternary System)

  • 김정돈;흥국선;주기태
    • 한국세라믹학회지
    • /
    • 제33권4호
    • /
    • pp.405-410
    • /
    • 1996
  • The partial substitution of LiTaO3 with Al2O3 caused the variation of dielectric properties and a lower melting temperature yielding an easier growth of single crystal. The lattice constants and Raman band broadening were measured for the LiTaO3 solid solution in which the cations of Li+ and Ta5+ were partially substituted by Al3+ cation. The LiTaO3 type limit phases were obtained. ; Li1.15Al0.45Ta0.7O3 for cationic excess Li1.15Al0.45Ta0.7O3 for stoichiometry Li0.85Al0.05TaO3 for cationic deficit. The second phase was formed beyond the solubility limit. The limit phase (Li0.85Al0.05TaO3) in the region of cationic deficit showed the lowest Cuire temperature of 61$0^{\circ}C$ and melting point of 152$0^{\circ}C$ compared to the solid solutions in other regions (TMp=1$650^{\circ}C$, Tc=69$0^{\circ}C$ for LiTaO3)

  • PDF

Low k Materials for High Frequency High Integration Modules

  • Na, Yoon-Soo;Lim, Tae-Young;Kim, Jin-Ho;Shin, Hyo-Soon;Hwang, Jong-Hee;Cho, Yong-Soo
    • 한국세라믹학회지
    • /
    • 제46권4호
    • /
    • pp.413-418
    • /
    • 2009
  • Glass systems based on Ca, Sr, Ba, and Zn modified alumino-boro silicates were investigated in order to improve the dielectric and mechanical properties of a typical LTCC (low temperature co-fired ceramic) which was developed for high frequency highly-integrated modules. The glass was prepared by a typical melting procedure and then mixed with cordierite fillers to fabricate glass/ceramic composite-type LTCC materials. The amount of cordierite filler was fixed at 50 volumetric%. For an optimal glass composition of 7.5% CaO, 7.5% BaO, 5% ZnO, 10% $Al_2O_3$, 30% $B_2O_3$, and 40% $SiO_2$ in mole ratio, the resultant LTCC composite showed a dielectric constant of 5.8 and a dielectric loss ($tan{\delta}$) of 0.0009 after firing at $900^{\circ}C$. An average bending strength of 160MPa was obtained for the optimal composition.

Ink-jet Printing을 이용한 3D-Integration 구현 (Fabrication of Ceramic 3D Integration Technology for Ink-jet Printing)

  • 황명성;김지훈;김효태;윤영준;김종희;문주호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.332-332
    • /
    • 2010
  • We have successfully demonstrated the inkjet printing method to create $Al_2O_3$ films withouWe have successfully demonstrated the inkjet printing method to create $Al_2O_3$ films without a high temperature sintering process. In order to remove the coffee ring effect in the ink drop, we have introduced a co-solvent system in order to create Marangoni flow in the ink drop, which leads to the dense packing of ceramic powders on the substrate during inkjet process. The packing density of the Inkjet-printed $Al_2O_3$ films is around 60% (max. 70%) which is very high compared to the value obtained from the same material films by other conventional methods such as film casting, dip coating process, etc. The voids inside the films (which are around 40% of the entire film volume) are filled with the polymer resin (Cyanate ester) by the infiltration process. This resin infiltration is also implemented by the inkjet printing process right after the Ah03 film ink-jetting process. The microstructures of the printed $Al_2O_3$ films are investigated by Scanning Electron Microscope (SEM) to understand the degree of packing density in the printed films. The inkjet-printed $Al_2O_3$ films have been characterized to investigate its thickness and roughness. Quality factor of the printed $Al_2O_3$ film is also measured to be over 300 at 1MHz.

  • PDF

저온소결 $Al_2O_3-TiO_2$ 세라믹의 마이크로파 유전특성에 관한 연구 (Low Temperature sintering of $Al_2O_3-TiO_2$ ceramics)

  • 임은경;김창일;박용준;이영진;남산;백종후
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.252-252
    • /
    • 2007
  • $Al_2O_3-TiO_2$(AT)ceramics shows great promise as a dielectric material for millimeter-wave use. The sintering temperature of AT ceramics was approximately $1450^{\circ}C$ and decreased to $900^{\circ}C$ with the addition of BaCu(B2O5) (BCB) ceramic powder. The presence, of the liquid phase was responsible for the decrease of the sintering temperature. The liquid phase is considered to have a composition similar to the BaO-deficient BCB. The Q-value initially increased with the addition of BCB, but decreased considerably when a large amount of BCB was added, because of the presence of the liquid phase. Good microwave dielectric properties of $Q{\times}f\;=\;16,200\;GHz$, ${\varepsilon}_r\;=\;9$ and ${\tau}_f\;=\;-4\;ppm/^{\circ}C$ were obtained for the 20.0 mol% BCB-added AT ceramics sintered at $900^{\circ}C$ for 2 h.

  • PDF

저온동시소성용 결정화 유리의 필러 사이즈가 열적 특성에 미치는 영향 (Effect of $Al_2O_3$ Particle Size on Thermal Properties of Glass-Ceramics for LTCC Material)

  • 김진호;황성진;이상욱;김형순
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.281-281
    • /
    • 2007
  • Low Temperature Co-fired Ceramic (LTCC) technology has been used in electronic device for various functions. LTCC technology is to fire dielectric ceramic and a conductive electrode such as Ag or Cu thick film below the temperature of $900^{\circ}C$ simultaneously. The glass-ceramic has been widely used for LTCC materials due to its low sintering temperature, high mechanical properties and low dielectric constants. To obtain the high strength, addition of filler, the microstructure should have various crystals and low pores in a composite. In this study, two glass frits were mixed with different alumina size(0.5, 2, 3.7um) and sintered at the range of $850{\sim}950^{\circ}C$. The microstructure, crystal phases, thermal and mechanical properties of the composites were investigated using FE-SEM, XRD, TG-DTA, Dilatomer. When the particle size of $Al_2O_3$ filler increased, the starting temperatures for the densification of the sintered bodies, onset point of crystallization, peak crystallization temperature in the glass-ceramic composites decreased gradually. After sintered at $900^{\circ}C$, the glass frits were crystallized as $CaAl_2Si_2O_8\;and\;CaMgSi_2O_6$. The purpose of our study is to understand the relationship between the $Al_2O_3$ particle size and thermal properties in composites.

  • PDF

저온 소결성 세라믹 기판재료 (Low Temperature Firing Ceramic Substrates for IC Package)

  • 김정돈;손용배;주기태;장성도
    • 한국세라믹학회지
    • /
    • 제29권2호
    • /
    • pp.83-88
    • /
    • 1992
  • New ceramic substrates firable at low temperature (<1000$^{\circ}C$) were prepared with mixture of alumina and glass powders in CaO-Al2O3-SiO2 system. The substrate of alumina 40 wt% and glass 60 wt%, which was fired between 900∼1000$^{\circ}C$, shows low dielectric constant (5∼8 at 1 MHz), specific gravity of 3.10, relatively low thermal expansion coefficient (5.5${\times}$10-6/$^{\circ}C$ at 40∼500$^{\circ}C$) and excellent surface roughness (0.4∼0.5 ${\mu}$Ra). These properties were thought to be superior to those of conventional Al2O3 ceramic substrates.

  • PDF

Effect of $Al_{2}O_{3}$ filler addition on sintering behavior of low-firing $BaO-B_{2}O_{3}-ZnO$ glass ceramic system

  • Kim, Young-Nam;Kim, Byung-Sook;Lee, Joon-Hyung;Kim, Jeong-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.814-817
    • /
    • 2003
  • The sintering behavior of $BaO-B_{2}O_{3}-ZnO$, which is Pb-free glass-ceramic system, was examined as functions of the composition and the amount and particle size of $Al_{2}O_{3}$ filler. Different kinds of modifiers were added and $Al_{2}O_{3}$ fillers with different particle sizes ($1.5{\mu}m$ and $4.5{\mu}m$) were added. The glass frit-filler composites were sintered in the temperature range $520{\sim}580^{\circ}C$. X-ray diffraction results revealed that some of the composites crystallized during sintering. Dielectric constant and thermal expansion coefficient the glass-ceramics were analyzed.

  • PDF

Microwave Dielectric Characteristics of Aluminum Magnesium Tantalate Based High Q Ceramics

  • Park, Ji-Won;Lee, Hwack-Joo;Yoon, Seok-Jin;Kim, Hyun-Hai
    • 한국세라믹학회지
    • /
    • 제40권4호
    • /
    • pp.354-359
    • /
    • 2003
  • The microwave dielectric characteristics of (1-x)(Al$\_$$\frac{1}{2}$/Ta$\_$$\frac{1}{2}$/)O$_2$-x(Mg$\_$1/3/Ta$\_$2/3/)O$_2$ (0$\leq$x$\leq$1.0) ceramics were investigated by crystalstructure, variations of ionic polarizability, and microstructures. As x increased, (1-x)(Al$\_$$\frac{1}{2}$/Ta$\_$$\frac{1}{2}$/)O$_2$-x(Mg$\_$1/3/Ta$\_$2/3/)O$_2$ transformed to tetragonal structure. Because the ionic radius of (Mg$\_$1/3/Ta$\_$2/3/)$\^$4+/was slightly bigger than one of (Al$\_$$\frac{1}{2}$/Ta$\_$$\frac{1}{2}$/)$\^$4+/, the cell parameters increased with increase of (Mg$\_$1/3/Ta$\_$2/3/)O$_2$concentration and coincided with prediction of the molecular additivity rule. As x increased, the compositions revealed ordered phase and were of single phase above 60 mol%. The increase of the ordered phase and grain size enhanced the Q and when ordering was completed at x over 0.6, the grain size was major factor for the increase in the a. Though the grain size increased, however, the porosity deteriorated the q. Therefore, the a depended on the order/disorder, the porosity, and the grain size in regular order.