• 제목/요약/키워드: $Al-SiC_p$

검색결과 426건 처리시간 0.037초

간접 용탕단조법에 의하여 제조한 $SiC_p/6061$ Al 복합재료의 조직과 기계적 성질 (Microstructure and Mechanical Properties of $SiC_p/6061$ Al Composites Fabricated by Indirect Squeeze Casting)

  • 서영호;강충길
    • 한국주조공학회지
    • /
    • 제18권4호
    • /
    • pp.373-382
    • /
    • 1998
  • Particulate reinforced aluminum alloys produced by indirect squeeze casting are difficult to shape by cutting or milling. Therefore near net shape forming of complex shapes is of high economic and technical interest. The complex shape products of $SiC_p/6061$ Al composites are fabricated by the melt-stirring and indirect squeeze casting process. The mold temperatures are $200^{\circ}C$ and $300^{\circ}C$ and applied pressures are 70, 100, and 130 MPa. The volume fractions of the reinforcements are in the range of 5 vol% to 15 vol%. The reinforcement dispersion state are observed using on optical microscope. By employing observed results systematically a correlation is demonstrated among the microstructure, particles behavior, mechanical properties and processing parameters for an optimum melt-stirring(compocasting) and indirect squeeze casting process of MMCs. A procedure to establish the optimum squeeze casting of Al-MMCs is proposed.

  • PDF

이온주입 공정을 이용한 4H-SiC p-n diode에 관한 시뮬레이션 연구 (Simulation study of ion-implanted 4H-SiC p-n diodes)

  • 이재상;방욱;김상철;김남균;구상모
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.131-131
    • /
    • 2008
  • Silicon carbide (SiC) has attracted significant attention for high frequency, high temperature and high power devices due to its superior properties such as the large band gap, high breakdown electric field, high saturation velocity and high thermal conductivity. We performed Al ion implantation processes on n-type 4H-SiC substrate using a SILVACO ATHENA numerical simulator. The ion implantation model used a Monte-Carlo method. We studied the effect of channeling by Al implantation simulation in both 0 off-axis and 8 off-axis n-type 4H-SiC substrate. We have investigated the Al distribution in 4H-SiC through the variation of the implantation energies and the corresponding ratio of the doses. The implantation energies controlled 40, 60, 80, 100 and 120 keV and the implantation doses varied from $2\times10^{14}$ to $1\times10^{15}cm^{-2}$. In the simulation results, the Al ion distribution was deeper as increasing implantation energy and the doping level increased as increasing implantation doses. After the post-implantation annealing, the electrical properties of Al-implanted p-n junction diode were investigated by SILV ACO ATLAS numerical simulator.

  • PDF

ZnO:Al 투명전도막을 이용한 높은 개방전압을 갖는 비정질 실리콘 박막 태양전지 제조 (Amorphous silicon thin-film solar cells with high open circuit voltage by using textured ZnO:Al front TCO)

  • 이정철;안세진;윤재호;송진수;윤경훈
    • 신재생에너지
    • /
    • 제2권3호
    • /
    • pp.31-36
    • /
    • 2006
  • Superstrate pin amorphous silicon thin-film(a-Si:H) solar cells are prepared on $SnO_2:F$ and ZnO:Al transparent conducting oxides(TCO) in order to see the effect of TCO/p-layers on a-Si:H solar cell operation. The solar cells prepared on textured ZnO:Al have higher open circuit voltage VOC than cells prepared on $SnO_2:F$. Presence of thin microcrystalline p-type silicon layer(${\mu}c-Si:H$) between ZnO:Al and p a-SiC:H plays a major role by causing improvement in fill factor as well as $V_{OC}$ of a-Si:H solar cells prepared on ZnO:Al TCO. Without any treatment of pi interface, we could obtain high $V_{OC}$ of 994mV while keeping fill factor(72.7%) and short circuit current density $J_{SC}$ at the same level as for the cells on $SnO_2:F$ TCO. This high $V_{OC}$ value can be attributed to modification in the current transport in this region due to creation of a potential barrier.

  • PDF

ZnO:Al 투명전도막을 이용한 높은 개방전압을 갖는 비정질 실리콘 박막 태양전지 제조 (Amorphous silicon thin-film solar cells with high open circuit voltage by using textured ZnO:Al front TCO)

  • 이정철;;이준신;송진수;윤경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.158-161
    • /
    • 2006
  • Superstrate pin amorphous silicon thin-film (a-Si:H) solar cells are prepared on $SnO_2:F$ and ZnO:Al transparent conducting oxides (TCO) In order to see the effect of TCO/P-layers on a-Si:H solar cell operation. The solar cells prepared on textured ZnO:Al have higher open circuit voltage $V_{oc}$ than cells prepared on $SnO_2:F$. Presence of thin microcrystalline p-type silicon layer $({\mu}c-Si:H)$ between ZnO:Al and p a-SiC:H plays a major role by causing improvement in fill factor as well as $V_{oc}$, of a-Si:H solar cells prepared on ZnO:Al TCO. Without any treatment of pi interface, we could obtain high $V_{oc}$, of 994mv while keeping fill factor (72.7%) and short circuit current density $J_{sc}$ at the same level as for the cells on $SnO_2:F$ TCO. This high $V_{oc}$ value can be attributed to modification in the current transport in this region due to creation of a potential barrier.

  • PDF

ARB법에 의해 강소성가공된 Al/SiCp 입자분산복합재료의 미세조직 및 기계적 특성 (Microstructure and Mechanical Properties of Al/SiCp Particle Reinforced Composite Severely Deformed by ARB Process)

  • 이성희;김형욱
    • 한국분말재료학회지
    • /
    • 제13권1호
    • /
    • pp.39-45
    • /
    • 2006
  • The $Al/SiC_p$ particle reinforced composite fabricated by a powder-in sheath rolling (PSR) method was severely. deformed by the accumulative roll-bonding (ARB) process. The ARB process was performed up to 8 cycles at ambient temperature without lubricant. The ARBed composite exhibited an ulbricant. grained structure similar to the other ARBed bulky materials. Tensile strength of the composite increased gradually with the number of ARB cycles, but from the 6th cycle it rather decreased slightly. These characteristics of the composite were somewhat different from those of Al powder compact fabricated by the same procedures. The difference in microstructure and mechanical properties between Al powder compact and the composite was discussed.

전자패키징용 금속복합재료의 제조공정 해석 및 충격특성평가 (Fabrication Process and Impact Characteristic Analysis of Metal Matrix Composite for Electronic Packaging Application)

  • 정성욱;정창규;남현욱;한경섭
    • Composites Research
    • /
    • 제15권1호
    • /
    • pp.32-40
    • /
    • 2002
  • 가압주조법을 이용하여 전자 패키징용 고부피분율 $SiC_p/Al$ 금속복합재료를 제조하였다. $SiC_p$ 예비성형체를 제조하기 위하여 예비성형체 금형을 고안하였으며, $Al_2O_{3f}$섬유 보강재를 $SiC_p$ 입자 보강재의 1/10비율로 첨가하고, 무기 성형제($SiO_2$)를 0.8% 이하로 사용하여 49~70 vol.% 의 예비성형체 제작에 성공하였다. 제조된 고부피분율 예비성형체로 금속용탕을 원활히 침투시키기 위해 온도, 가압력 등의 제조조건을 정하였으며, 이러한 새로이 고안된 금형조건을 FEM 열전도 해석에 도입하여 금속복합재료 제조시 몰드 내부에서 발생하는 온도변화를 분석하였다. 제조된 금속복합재료에 대해서는 충격특성 및 열팽창계수 특성평가를 실시하였다. 본 연구를 통해 제조된 금속복합재료의 충격흡수 에너지는 0.2~0.3J, 열팽창계수는 $8~10ppm/^{\circ}C$, 밀도는 $2.9~3.0g/cm^3$로 나타나 패기징 재료로서 적합한 특징을 가진 복합재료가 성공적으로 개발되었음을 확인하였다.

ZnO 압전박막의 제조와 유량조절밸브로서의 응용 (ZnO Piezoelectric Thin Film Fabrication and Its Application as a Flow-rate Control Microvalve)

  • 박세광
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1989년도 춘계학술대회 논문집
    • /
    • pp.66-69
    • /
    • 1989
  • After reviewing previous work done on two piezoelectric thin films(PZT, ZnO), ZnO thin piezofim of 1-3UM is fabricated by sputtering on the different substrates(i. e., P+Si/N-Si, SiO2/P+Si/ N-Si, Al/SiO2/ P+Si/ N+Si). The result shows that ZnO piezofilm on the Al has the best c-axis orientation. One of applications for the ZnO piezofilm as an microvalve to control liquid flow is introduced, and which can be controlled electrically and remotely.

  • PDF

결정질 실리콘 태양전지의 패시베이션 적용을 위한 Al2O3/SiON 적층구조의 열적 안정성에 대한 연구 (A Study on the Thermal Stability of an Al2O3/SiON Stack Structure for c-Si Solar Cell Passivation Application)

  • 조국현;장효식
    • 한국세라믹학회지
    • /
    • 제51권3호
    • /
    • pp.197-200
    • /
    • 2014
  • We investigated the influence of blistering on $Al_2O_3$/SiON stacks and $Al_2O_3$/SiNx:H stacks passivation layers. $Al_2O_3$ film provides outstanding Si surface passivation quality. $Al_2O_3$ film as the rear passivation layer of a p-type Si solar cell is usually stacked with a capping layer, such as $SiO_2$, SiNx, and SiON films. These capping layers protect the thin $Al_2O_3$ layer from an Al electrode during the annealing process. We compared $Al_2O_3$/SiON stacks and $Al_2O_3$/SiNx:H stacks through surface morphology and minority carrier lifetime after annealing processes at $450^{\circ}C$ and $850^{\circ}C$. As a result, the $Al_2O_3$/SiON stacks were observed to produce less blister phenomenon than $Al_2O_3$/SiNx:H stacks. This can be explained by the differences in the H species content. In the process of depositing SiNx film, the rich H species in $NH_3$ source are diffused to the $Al_2O_3$ film. On the other hand, less hydrogen diffusion occurs in SiON film as it contains less H species than SiNx film. This blister phenomenon leads to an increase insurface defect density. Consequently, the $Al_2O_3$/SiON stacks had a higher minority carrier lifetime than the $Al_2O_3$/SiNx:H stacks.