• 제목/요약/키워드: $Ag_xO$

검색결과 292건 처리시간 0.024초

화학적 방법으로 성장된 ZnO nanorod 구조에서 Ag 나노입자의 영향

  • 고영환;유재수
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.189-189
    • /
    • 2010
  • ZnO nanorods 구조는 광소자 및 태양광 소자의 성능을 향상시키기 위해서 무반사계수, 광추출효율, 전기적, 열적 전도도를 개선시킬 수 있어, 매우 큰 관심을 가지고 왔다. 또한 Ag 나노입자는 표면 플라즈몬 효과를 이용하여 LED나 태양전지에 응용하여 소자의 성능이 향상됨을 이론적, 실험적으로 증명되어 왔으며, 현재에도 활발한 연구가 진행되고 있다. 이러한 ZnO nanorods 특성과 Ag 나노입자의 표면 플라즈몬 효과를 이용하기 위해서, 본 연구에서는 Ag 나노 입자를 형성된 ZnO seed층에 ZnO nanorods를 성장시켰다. 시료를 제작을 위해서 비교적 성장이 간단하고 저온성장이 가능한 화학적 합성방법을 이용하였다. Ag 나노입자가 형성된 ZnO seed층 제작을 위해서 먼저 Si 기판위에 RF magnetron 스퍼터를 이용하여 고진공, $N_2$ 분위기에서 일정한 두께로 증착을 하였으며, 이후 Ag 박막을 thermal evaporator로 10 nm 두께로 증착하였다. 그 다음, 크기가 다른 Ag 나노입자를 형성을 위해서 rapid thermal annealing (RTA)을 여러 가지 온도에서 수행하였다. 그리고 이러한 시료들를 이용하여, ZnO nanorods를 성장하기 위하여, $90-95^{\circ}$의 온도에서 zinc nitrate $Zn(NO_3)_2{\cdot}6H_2O$과 hexamethylentetramines (HMT)으로 혼합된 용액에 담가두어 ZnO nanorods를 성장시켰다. Ag 나노입자의 크기에 따라 ZnO nanorods의 구조와 형태에 대하여 어떠한 영향을 주는지를 관찰하기 위해 field emission scanning electron microscopy (FE-SEM)을 이용하여 측정하였으며, Ag와 ZnO의 성분분석과 결정성을 조사하기 위해 X-ray diffraction (XRD)을 이용하여 분석하였다. 그리고 표면 플라즈몬에 의한 영향에 대하여 조사하기 위해, ZnO nanorods와 Ag 나노입자가 형성된 ZnO nanorods를 UV-Vis-NIR spectrophotometer을 이용하여 흡수계수와 반사계수를 비교하여 측정하였으며. 태양전지의 성능향상을 수 있음을 이론적으로 계산하였다. 그리고 또한 photoluminescence (PL) 분석을 수행하여 ZnO nanorods의 구조에 대하여 Ag 나노입자의 영향에 대한 광특성을 측정하였다.

  • PDF

졸-겔공정/광증착법을 이용한 Ag-Doped TiO2 합성 및 광촉매 특성 (Photocatalytic Properties of the Ag-Doped TiO2 Prepared by Sol-Gel Process/Photodeposition)

  • 김병민;김정식
    • 한국재료학회지
    • /
    • 제26권2호
    • /
    • pp.73-78
    • /
    • 2016
  • $TiO_2$ nanoparticles were synthesized by a sol-gel process using titanium tetra isopropoxide as a precursor at room temperature. Ag-doped $TiO_2$ nanoparticles were prepared by photoreduction of $AgNO_3$ on $TiO_2$ under UV light irradiation and calcinated at $400^{\circ}C$. Ag-doped $TiO_2$ nanoparticles were characterized for their structural and morphological properties by X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The photocatalytic properties of the $TiO_2$ and Ag-doped $TiO_2$ nanoparticles were evaluated according to the degree of photocatalytic degradation of gaseous benzene under UV and visible light irradiation. To estimate the rate of photolysis under UV (${\lambda}=365nm$) and visible (${\lambda}{\geq}410nm$) light, the residual concentration of benzene was monitored by gas chromatography (GC). Both undoped/doped nanoparticles showed about 80 % of photolysis of benzene under UV light. However, under visible light irradiation Ag-doped $TiO_2$ nanoparticles exhibited a photocatalytic reaction toward the photodegradation of benzene more efficient than that of bare $TiO_2$. The enhanced photocatalytic reaction of Ag-doped $TiO_2$ nanoparticles is attributed to the decrease in the activation energy and to the existence of Ag in the $TiO_2$ host lattice, which increases the absorption capacity in the visible region by acting as an electron trapper and promotes charge separation of the photoinduced electrons ($e^-$) and holes ($h^+$). The use of Ag-doped $TiO_2$ nanoparticles preserved the option of an environmentally benign photocatalytic reaction using visible light; These particles can be applicable to environmental cleaning applications.

Ag 함유량에 따른 Sn-Ag-Cu 솔더의 Solderability 및 반응 특성 변화 (Solderability Evaluation and Reaction Properties of Sn-Ag-Cu Solders with Different Ag Content)

  • 유아미;이종현;강남현;김정한;김목순
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년 추계학술발표대회 개요집
    • /
    • pp.169-171
    • /
    • 2006
  • Solderability and reaction properties were investigated for four Pb-free alloys as a function of Ag contents; Sn-4.0Ag-0.5Cu, Sn-3.0Ag-0.5Cu, Sn-2.5Ag-0.5Cu, and Sn-1.0Ag-0.5Cu. The alloy of the lowest Ag content, i.e., Sn-1.0Ag-0.5Cu, showed poor wetting properties as the reaction temperature decreased to 230oC. Variation of Ag concentration in the Sn-xAg-0.5Cu alloy shifted exothermic peaks indicating the undercooling temperature in DSC curve. For the aging process at 170oC, the thickness of IMCs at the board-side solder/Cu interface increased with the Ag concentration.

  • PDF

재사용이 가능한 나노복합재료 Fe3O4-ACCS-Ag의 제조 및 항균 특성 평가 (Investigation of Synthesis and Antibacterial Properties of a Magnetically Reusable Fe3O4-ACCS-Ag Nanocomposite)

  • 심재홍;김해원;김진원;서영석;오세강;조민;박정희;오병택
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권3호
    • /
    • pp.25-33
    • /
    • 2015
  • In this study, Fe3O4-ACCS-Ag nanoparticles (NPs) were successfully synthesized using silica extracted from corn cob ash. The synthesized Fe3O4-ACCS-Ag NPs were characterized using X-ray diffraction (XRD), scanning electron microscopyenergy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM) and fourier transform infrared spectroscopy (FTIR). In addition, the potential application of Fe3O4-ACCS-Ag NPs as an antibacterial material in water disinfection was investigated using Escherichia coli ATCC 8739 as model bacteria. The antibacterial activity of synthesized composite material showed 99.9% antibacterial effect within 20 min for the tested bacteria. From this experiment, the synthesized Fe3O4-ACCS-Ag nanocomposites also hold magnetic properties and could be easily recovered from the water solution for its reuse. The reused nanocomposites presented the decreasing antibacterial efficiencies with the reuse cycle but the composite used three times still killed 90% of bacteria in 20 min.

Ag2Se-Graphene/TiO2 Nanocomposites, Sonochemical Synthesis and Enhanced Photocatalytic Properties Under Visible Light

  • Meng, Ze-Da;Zhu, Lei;Ghosh, Trisha;Park, Chong-Yeon;Ullah, Kefayat;Nikam, Vikram;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3761-3766
    • /
    • 2012
  • $Ag_2Se$-Graphene/$TiO_2$ composite was synthesized by a facile sonochemical method. The as-prepared products were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM) and UV-vis diffuse reflectance spectrophotometer. During the reaction, both of the reduction of graphene oxide and loading of $Ag_2Se$ and $TiO_2$ particles were achieved. The as-prepared $Ag_2Se$-Graphene/$TiO_2$ composites possessed great adsorptivity of dyes, extended light absorption range, and efficient charge separation properties simultaneously. Hence, in the photodegradation of rhodamine B (Rh.B), a significant enhancement in the reaction rate was observed with $Ag_2Se$-Graphene/$TiO_2$ composites, compared to the pure $TiO_2$. The high activity can be attributed to the synergetic effects of high charge mobility, and red shift in absorption edge of $Ag_2Se$-Graphene/$TiO_2$ composites.

Li[Ni0.2Li0.2Mn0.6]O2 양극물질의 Ag 도핑(Doping) 효과 (Ag Doping Effect on Li[Ni0.2Li0.2Mn0.6]O2 Cathode Material)

  • 유제혁;김석범;박용준
    • 한국전기전자재료학회논문지
    • /
    • 제21권3호
    • /
    • pp.249-254
    • /
    • 2008
  • Ag doping effect on $Li[Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ cathode material was studied. Specially, we focused on rate performance of Ag doped samples. The $Li[Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ powder was prepared by simple combustion method and the Ag was doped using $AgNO_3$ during gelation process. Based on X-ray diffraction analysis, there was no structural change by Ag doping, but the 'metallic' form of Ag was included in the doped powder. Both bare and Ag 1 wt.% doped sample showed similar discharge capacity of 242 mAh/g at 0.2C rate. However, as the increase of charge-discharge rate to 3C, Ag 1 wt.% doped sample showed higher discharge capacity (172 mAh/g) and better cyclic performance than those of bare sample. The discharge capacity of Ag 5 wt.% doped sample was relatively low at all rate condition. However it displayed better rate performance than other samples.

나노 사이즈의 Ag dot을 성막한 ITO 애노드의 오존처리에 의한 유기발광소자의 홀 주입 특성 향상 (Enhancement of Hole Injection in Organic Light Emitting Device by using Ozone Treated Ag Nanodots Dispersed on ITO Anode)

  • 문종민;배정혁;정순욱;이민수;김한기
    • 한국전기전자재료학회논문지
    • /
    • 제19권11호
    • /
    • pp.1037-1043
    • /
    • 2006
  • We report the enhancement of hole injection using ozone-treated Ag nanodots dispersed on indium tin oxide anode in $Ir(ppy)_3-doped$ phosphorescent OLED. Phosphorescent OLED fabricated on Ag nanodots dispersed ITO anode showed a lower turn on voltage and higher luminescence than those of OLEDS prepared commercial ITO anode. Synchrotron x-ray scattering examination results showed that the Ag nanodots dispersed on ITO anode is amorphous structure due to low deposition temperature. It was thought that decrease of the energy barrier height as Ag nanodots changed to $AgO_x$ nanodots by surface treatment using ozone for 10 min led to enhancement of hole injection in phosphorescent OLED. Futhermore, efficient hole injection can be explained by increase of contact region between anode material and organic material through introduction of $Ag_2O$ nanodots.

Preparation of Yba2Cu3Ox Superconductor Prepared with Additives of PbO and Ag2O

  • Chu, Soon-Nam;Park, Jung-Cheul;Jeon, Yong-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권1호
    • /
    • pp.31-34
    • /
    • 2009
  • The improvement of preparation process of ${YBa_2}{Cu_3}{O_x}$ superconductor and its conducting properties is important for practical applications. In this study, the additives such as $Ag_{2}O$ and PbO were used to improve the preparation conditions of ${YBa_2}{Cu_3}{O_x}$ superconducting bulk samples and the properties of ${YBa_2}{Cu_3}{O_x}$ superconductors prepared with powders using sol-gel method and solid state reaction method were studied. The effects of the different powders and the additives to the density, grain alignment, and porosity of samples, that affect the critical current density of superconductor, also have been investigated. It is found that the properties of ${YBa_2}{Cu_3}{O_x}$ prepared with sol-gel synthesized powder and the additives showed better superconductivities than those of conventionally prepared superconductors.

The Distance-Dependent Fluorescence Enhancement Phenomena in Uniform Size Ag@SiO2@SiO2(dye) Nanocomposites

  • Arifin, Eric;Lee, Jin-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.539-544
    • /
    • 2013
  • $Ag@SiO_2@SiO_2$(FITC) nanocomposites were prepared by the simple polyol process and St$\ddot{o}$ber method. Fluorescence enhancement of fluorescein moiety (fluorescein isothiocyanate, FITC) was investigated in the presence of silver nanoparticles in $Ag@SiO_2@SiO_2$(FITC) system with varying thickness (X nm) of first silica shell. Maximum enhancement factor of 4.3 fold was achieved in $Ag@SiO_2@SiO_2$(FITC) structure with the first silica shell thickness of 8 nm and the average separation distance of 11 nm between the surface of silver nanoparticle and fluorescein moiety. The enhancement is believed to be originated from increased excitation rate of fluorescein moiety due to concentrated local electromagnetic field which was improved by interaction of light with silver nanoparticles.