• Title/Summary/Keyword: $AgBF_4$

Search Result 28, Processing Time 0.019 seconds

A Study on the Trace Analysis of Germanium in Inorganic Matrices by Differential Pulse Polarography (Differential Pulse Polarography에 의한 무기물 시료 중 Germanium의 미량 분석에 관한 연구)

  • Shin, Ho-Sang;Oh, Yun-Suk;Shin, Hak-Soo
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.253-261
    • /
    • 1996
  • Analytical method for the determination of trace germanium in inorganic matrices by differential pulse polarography(DPP) was studied. The reduction peak of germanium(IV) in perchloric acid solution containing 1, 2, 3-trihydroxy benzene appeared at -0.45V(vs. Ag/AgCl) and the peak current for germanium complex varied linearly with concentration variation. Factors affecting sensitivity and precision for germanium quantification were studied and detection limit under the investigated parameters was 1ng/ml. Inorganic samples were decomposed by fusion with potassium pyrosulfate. Serious interferences of Se(IV), Pb(II), As(III) for the determination of germanium were discussed. Interferences of these elements could be avoided by extraction of germanium from decomposed matrices by $CCl_4$ in 10M HCl solution. The germanium contents of inorganic samples(Pb bf. dust, Cu bf. dust, gneiss, Cu anode slime) were determined by the above method.

  • PDF

Effect of Salt on Facilitated Propylene Transport through Crosslinked PVA/Silver Salt Complex Membranes

  • Kim, Jong-Hak;Min, Byoung-Ryul;Lee, Ki-Bong;Kang, Yong-Soo
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.43-49
    • /
    • 2006
  • Complex membranes consisting of silver salt ($AgBF_4,\;AgCF_3SO_3,\;AgSbF_6,\;AgNO_3$) and poly(vinyl alcohol) (PVA) or crosslinked PVA (CPVA) were prepared and tested for the separation of propylene/propane mixtures. For the tested membranes, the complex membranes containing $AgBF_4$ exhibited the highest separation properties, i.e., approximately 20 GPU ($1 GPU=10^{-6}cm^3 (STP)/(cm^2 sec cmHg)$) and 100 of selectivity at 0.2 of silver mole fraction. The CPVA membranes containing silver salt always showed higher selectivity than PVA membranes, presenting silver ions coordinated to -CHO are more effective than those to -OH groups. The threshold silver concentration of CPVA membranes was lower than that of PVA membranes, which might be due to stronger interaction of silver ions with -CHO than that with -OH. The composition at which the selectivity is the highest did not significantly depend on the crosslinking, but did on the kind of silver salt.

X-ray and Spectroscopy Studies of Mercury (II) and Silver (I) Complexes of α-Ketostabilized Phosphorus Ylides (α-케토안정화된 일리드화 인의 수은(II) 및 은(I) 착물에 대한 X-선 및 분광학적 연구)

  • Karami, K.;Buyukgungor, O.;Dalvand, H.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.38-45
    • /
    • 2011
  • The complexation behavior of the $\alpha$-ketostabilized phosphorus ylides $Ph_3P$=CHC(O) $C_6H_4-X$ (X=Br, Ph) towards the transition metal ions mercury (II) and Silver (I) was investigated. The mercury(II) complex {$HgX_2$ [Y]} 2 ($Y_1$=4-bromo benzoyl methylene triphenyl phosphorane; X=Cl(1), Br(2), I(3), $Y_2$=4-phenyl benzoyl methylene triphenyl phosphorane; X=Cl(4), Br(5), I(6)) have been prepared from the reaction of $Y_1$ and $Y_2$ with $HgX_2$ (X=Cl, Br, I) respectively. Silver complexes [$Ag(Y_2)_2]$ X(X=$BF_4$(7), OTf(8)) of the $\alpha$-keto-stabilized phosphorus ylides ($Y_2$) were obtained by reacting this ylide with AgX (X=$BF_4$, OTf) in $Me_2CO$. The crystal structure of complexes (1) and (4) was discussed. These reactions led to binuclear complexes C-coordination of ylide and trans-like structure of complexes $[Y_1HgCl_2]_2$. $CHCl_3$ (1) and $[Y_2HgCl_2]_2$ (4) is demonstrated by single crystal X-ray analyses. Not only all of complexes have been studied by IR, $^1H$ and $^{31}P$ NMR spectroscopy, but also complexes 1-3 have been characterized by $^{13}$CNMR.

Preparation and Characterization of Highly Permeable Facilitated Olefin Transport Nanocomposite Membrane Utilizing 7,7,8,8-tetracyanoquinodimethane (7,7,8,8-Tetracyanoquinodimethane를 활용한 고투과성 올레핀 촉진수송 나노복합체 분리막 제조 및 특성 분석)

  • Hwang, Jeonghyun;Lee, Eun Yong;Kang, Sang Wook
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.417-422
    • /
    • 2014
  • The poly(ethylene oxide) (PEO)/Ag Nanoparticles (NPs)/7,7,8,8-Tetracyanoquinodimethane (TCNQ) membrane was fabricated to obtain highly permeable facilitated olefin transport nanocomposite membrane, compared with PEO/Ag NPs/p-Benzoquinone (p-BQ) membrane. Polymer matrix, PEO and silver nanoparticle precursor $AgBF_4$ were fixed at 1 : 0.4 mole ratio and electron acceptor TCNQ content was controlled variously. And the best olefin separation performance was obtained at 1/0.4/0.004 mole ratio, and long-term separation performance was measured at this ratio. As a result, mixed-gas permeance decreased from 23 to 6 GPU, and selectivity decreased from 6 to 2 (propylene/propane) after 32 hours.

A SPECTROSCOPIC STUDY OF THE CLOSE BINARY AG VIRGINIS (근접쌍성 AG Virginis의 분광학적 연구)

  • Kim, Ho-Il;Lee, Chung-Uk;Lee, Jae-Woo;Sohn, Mi-Rim
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.353-362
    • /
    • 2005
  • We performed a new high-resolution spectroscopy of AG Vir for 4 nights from 25 March 2004 using the BOES (Bohyunsan Optical Echelle Spectrograph) attached to the 1.8-m reflector at Bohyunsan Optical Astronomy Observatory, and obtained a total of 59 spectra where all orbital phases are covered. To get the radial velocities of the binary system, both method of the CCF (Cross-Co..elation Function)and the BF (Broadening Function) were applied to the analysis of all the observed spectra. From these, the CCF could calculate the radial velocities of the primary star alone, while the BF could determine those of the primary and the secondary components. New absolute dimensions were deduced with the combination of our spectroscopic orbital elements ($K_1=90.5km/s$$K_2=258.8$) and the photometric solutions of Bell, Rainger, & Hilditch (1990): $A_1,=1.99M_\bigodot,\;M_2=0.62M_\bigodot,\;R_1=2.21R_\bigodot,\;R_2=1.36R_\bigodot,\;L_1=13.17L_\bigodot,\;and\;L_2=3.47L_\bigodot$. Our absolute parameters are larger and brighter than those derived from Bell, Rainger, & Hilditch (1990). We re-analyzed all the previous radial-velocity curves of AG Vir and, as a result, can see that its system velocity scatters largely up to ${\pm}8km/s$. However, we, at present, cannot determine this as the light-time effect due to the third body, which was suggested as a cause of the orbital period changes by Qian (2001).

Facilitated Transport Membranes Based on PVA-g-PAA Graft Copolymer (PVA-g-PAA 가지형 공중합체 기반 촉진수송 분리막)

  • Park, Min Su;Kang, Miso;Park, Bo Ryoung;Kim, Jeong-Hoon;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.31 no.3
    • /
    • pp.212-218
    • /
    • 2021
  • It is inevitable to generate incomplete combustion gases when mankind utilizes fossil fuels. From this point of view, gas separation process of combustion gas suggests the possibility of recycling CO gas. In this study, we fabricated a facilitated transport polymeric composite membrane for CO separation using AgBF4 and HBF4. The copolymer was synthesized via free-radical polymerization of poly(vinyl alcohol) (PVA) as a main chain and acrylic acid (AA) monomer as a side chain. The polymer synthesis was confirmed by FT-IR and the interactions of graft copolymer with AgBF4, and HBF4 were characterized by TEM. PVA-g-PAA graft copolymer membranes showed good channels for facilitated CO transport. In this perspective, we suggest the novel approach in CO separation membrane area via combination of grafting and facilitated transport.

Ionic Liquid as a Solvent and the Long-Term Separation Performance in a Polymer/Silver Salt Complex Membrane

  • Kang, Sang-Wook;Char, Kook-Heon;Kim, Jong-Hak;Kang, Yong-Soo
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.167-172
    • /
    • 2007
  • The reduction behavior of silver ions to silver nanoparticles is an important topic in polymer/silver salt complex membranes to facilitate olefin transport, as this has a significant effect on the long-term performance stability of the membrane. In this study, the effects ofthe solvent type on the formation of silver nanoparticles, as well as the long-term membrane performance of a solid polymer/silver salt complex membrane were investigated. These effects were assessed for solid complexes of poly(N-vinyl pyrrolidone) $(PVP)/AgBF_4$, using either an ionic liquid (IL), acetonitrile (ACN) or water as the solvent for the membrane preparation. The membrane performance test showed that long-term stability was strongly dependent on the solvent type, which increased in the following order: IL > ACN >> water. The formation of silver nanoparticles was more favorable with the solvent type in the reverse order, as supported by UV-visible spectroscopy. The poor stability of the $(PVP)/AgBF_4$ membrane when water was used as the solvent might have been due to the small amount of water present in the silver-polymer complex membranes actively participating in the reduction reaction of the silver ions into silver nanoparticles. Conversely, the higher stability of the $(PVP)/AgBF_4$, membrane when an IL was used as the solvent was attributable to the cooperative coordination of silver ions with the IL, as well as with the polymer matrix, as confirmed by FTIR spectroscopy.

Effect of Valine on facilitated O1e1in Transport Membranes (올레핀 촉진수송 분리막의 성능향상을 위한 Valine의 효과)

  • Yong Soo Kang;Sang Wook Kang;Jong Hak Kim;Jongok Won;Kookheon Char
    • Membrane Journal
    • /
    • v.13 no.2
    • /
    • pp.125-129
    • /
    • 2003
  • A remarkable separation performance of olefin/paraffin mixtures has been observed through facilitated olefin transport membranes consisting of silver ions dissolved in polymer matrices. In this research, valine, an amino acid, was introduced in poly (2-ethyl-2-oxazoline) (POZ)/$AgBF_4$ membranes to increase the separation performance. FT-IR spectra show that the cationic sites ($-NH_3^+$) of valine interact with the counter anion of the silver salt, resulting in the enhanced activity of the silver ions and consequently improved separation perfornance. Therefore, the $POZ/AgBF_4$ membranes containing valines exhibit the higher permeance as well as the higher selectivity of propylene/propane than those without valine.

Review on Facilitated Olefin Transport Membranes Utilizing Polymer Electrolytes and Polymer Nanocomposites (고분자 전해질과 고분자 나노복합체를 활용한 올레핀 촉진수송 분리막에 대한 총설)

  • Kang, Sang Wook
    • Membrane Journal
    • /
    • v.26 no.3
    • /
    • pp.173-178
    • /
    • 2016
  • In this short review, the polymer electrolyte membranes consisting of polymer and Ag salts were introduced and various approaches to solve the long-term stability were summarized. In particular, utilizing $AgNO_3$ as carriers with ionic liquid, the replacement of polymer matrix as poly(ethylene phthalate) (PEP) for strong coordinative interactions with Ag ions and the introduction of $Al(NO_3)_3$ to $polymer/AgBF_4$ complexes were introduced for long-term stable facilitated olefin transport membranes. For the polymer nanocomposite membranes, the role of electron acceptors as polarizer on the surface of AgNPs and the approach to solve the low permeance were introduced.

Olefin Separation Membranes Based on PEO/PDMS-g-POEM Blends Containing AgBF4/Al(NO3)3 Mixed Salts (AgBF4/Al(NO3)3 혼합염이 포함된 PEO/PDMS-g-POEM 블렌드 기반의 올레핀 분리막)

  • Kim, Sang Jin;Jung, Jung Pyu;Park, Cheol Hun;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.496-502
    • /
    • 2015
  • Facilitated transport is one of the possible solutions to simultaneously improve permeability and selectivity, which is challenging in conventional polymer-based membranes. Olefin/paraffin separation using facilitated transport membrane has received much attention as an alternative solution to the conventional distillation process. Herein, we report olefin separation composite membranes based on the polymer blends containing $AgBF_4/Al(NO_3)_3$ mixed salts. Free radical polymerization process was used to synthesize an amphiphilic graft copolymer of poly(dimethyl siloxane)-graft- poly(ethylene glycol) methyl ether methacrylate (PDMS-g-POEM). In addition, poly(ethylene oxide) (PEO) was introduced to the PDMS-g-POEM graft copolymer to form polymer blends with various ratios. The propylene/propane mixed-gas selectivity and permeance reached up to 5.6 and 10.05 GPU, respectively, when the PEO loading was 70 wt% in polymer blend. The improvement of olefin separation performance was attributed to the olefin facilitating silver ions as well as the highly permeable blend matrix. The stabilization of silver ions in the composite membrane was achieved through the introduction of $Al(NO_3)_3$ which suppressed the reduction of silver ions to silver particles.