• Title/Summary/Keyword: $A_2O$ sequencing batch biofilm reactor

Search Result 3, Processing Time 0.019 seconds

A Comparison of Nutrients Removal Characteristics by the Variation of Organics in $A_{2}O$ SBR and $A_{2}O$ SBBR for the Small Sewerage System (소규모 오수처리를 위한 $A_{2}O$ SBR과 $A_{2}O$ SBBR에서 유입 유기물 농도변화에 따른 염양염류 제거 특성 비교)

  • Park, Young-Seek;Jeong, No-Sung;Kim, Dong-Seog
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.5 s.92
    • /
    • pp.451-461
    • /
    • 2006
  • Laboratory scale experiments were conducted to study the conversion of sludge from conventional activated sludge to nitrogen-phosphorus removal sludge using two types of sequencing batch reactor (SBR) systems, a conventional SBR and sequencing batch biofilm reactor (SBBR). The nitrogen and phosphorus removal characteristics were similar between SBR and SBBR and the removal efficiencies were very low when the influent TOC concentrations were low. The nitrogen and phosphorus removal efficiencies in SBR were 96% and 77.5%, respectively, which were higher than those in SBBR (88% and 42.5%) at the high influent TOC concentration. In SBBR, the simultaneous nitrification-denitrification was occurred because of the biofilm process. The variations of pH, DO concentration and ORP were changed as the variation of influent TOC concentration both in SBR and SBBR and their periodical characteristics were cleary shown at the high influent TOC concentration. Especially, the pH, DO concentration and ORP inflections, were cleary occurred in SBR compared with SBBR.

A Comparison of Nutrient Removal Characteristics between (AO)2 SBBR and A2O SBBR ((AO)2 SBBR과 A2O SBBR에서 영양염류 제거 특성 비교)

  • Park, Young-Seek;Kim, Dong-Seog
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.444-450
    • /
    • 2006
  • This study was carried out to compare the performance of two types of sequencing batch biofilm reactors (SBBRs), anoxic-oxic-anoxic-oxic $(AO)_2$ SBBR and anoxic-oxic-anoxic $A_2O$ SBBR, on the biological nutrient removal. The TOC removal efficiency in $A_2O$ SBBR was higher than that in $(AO)_2$ SBBR. At the 1st non-aeration period, the release of ${PO_4}^{3-}-P$ in $A_2O$ SBBR was higher than that in $(AO)_2$ SBBR because of the high TOC removal. At the 1st aeration-period, the nitrification was not completed in $(AO)_2$ SBBR, however, it was completed in $A_2O$ SBBR and the nitrification rate in $A_2O$ SBBR was higher than that in $(AO)_2$ SBBR. The release and uptake of ${PO_4}^{3-}-P$ in $A_2O$ SBBR was much higher than in $(AO)_2$ SBBR. Also, the profiles of DO and pH in reactors were used to monitor the biological nutrient removal in two SBBRs. The break point in DO and pH curves at the aeration period coincided with the end of nitrification.

A Comparison of N and P Removal Characteristics by the Variation of Non-aeration Time in A2O SBBR (A2O SBBR에서 비포기 시간 배분에 따른 질소-인 제거 특성 비교)

  • Park, Young-Seek;Jeong, No-Sung;Kim, Dong-Seog
    • Journal of Environmental Science International
    • /
    • v.16 no.7
    • /
    • pp.813-821
    • /
    • 2007
  • Laboratory scale experiments were conducted to investigate the removal characteristics of nitrogen and phosphorus in two sequencing batch biofilm reactors (SBBRs). SBBR1 had a short first non-aeration period and SBBR2 had a long first non-aeration period. The removal characteristics of nitrogen and phosphorus in each SBBR were precisely observed according to the variation of influent TOC concentration, and the operation control parameters (pH, DO concentration, ORP) in each reactor were measured. In biological nitrogen removal, there was little difference between SBBR1 and SBBR2 and the nitrogen removal efficiencies were very low. The nitrogen and phosphorus removal characteristics in high influent TOC concentration were different from those in low TOC. Nitrogen removals by simultaneous nitrification/denitrification (SND) were occurred in both SBBR1 and SBBR2. The P removal in SBBR1 was superior to that in SBBR2. The second P release was observed in SBBR1 which had long second non-aeration period.