• 제목/요약/키워드: $AE_{mode}$

Search Result 175, Processing Time 0.023 seconds

Two-Parameter Study on the Jet Regurgitant Mode of Resonant Tube

  • Chang, Se-Myong;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2E
    • /
    • pp.20-26
    • /
    • 2000
  • A conceptual simplified model of Hartmann-Sprenger tube is suggested and investigated to decouple the regurgitant mode in the present paper. In spite of high nonlinearity, the acoustic behavior of this resonant tube system is dependent on wavelength and depth of the tube. The effect of forcing frequency and tube geometry on jet regurgitant mode are studied and discussed. With a conventional axisymmetric Euler code, sensitive acoustic problems are solved and validated by comparison with analytic theories.

  • PDF

Damage Analysis of Singly Oriented Ply Fiber Metal Laminate under Concentrated Loading Conditions by Using Acoustic Emission (음향 방출법을 이용한 집중하중을 받는 일방향 섬유 금속 적층판의 손상 해석)

  • 남현욱;김용환;한경섭
    • Composites Research
    • /
    • v.14 no.5
    • /
    • pp.46-53
    • /
    • 2001
  • In this research, damage behavior of singly oriented ply (SOP) fiber metal laminate (FML) subjected to concentrated load was studied. The static indentation tests were conducted to study fiber orientation effect on damage behavior of FML. During the static indentation tests, acoustic emission technique (AE) was adopted to study damage characteristics of FML. AE signals were obtained by using AE sensor with 150kHz resonance frequency and the signals were compared with indentation curves of FML. The damage process of SOP FML was divided by three parts, i.e., crack initiation, crack propagation, and penetration. The AE characteristics during crack initiation show that the micro crack is initiated at lower ply of the plate, then propagate along the thickness of the plate with creating tiber debonding. The crack grow along the fiber direction with occurring 60∼80dB AE signal. During the penetration, the fiber breakage was observed. As fiber orientation increases, talc fiber breakage occurs more frequently. The AE signal behaviors support these results. Cumulative AE counts could well predict crack initiation and crack propagation and AE amplitude were useful for the prediction of damage failure mode.

  • PDF

High Performance Implementation of SGCM on High-End IoT Devices

  • Seo, Hwajeong
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.4
    • /
    • pp.212-216
    • /
    • 2017
  • In this paper, we introduce novel techniques to improve the high performance of AE functions on modern high-end IoT platforms (ARM-NEON), which support SIMD and cryptography instruction sets. For the Sophie Germain Counter Mode of operation (SGCM), counter modes of encryption and prime field multiplication are required. We chose the Montgomery multiplication for modular multiplication. We perform Montgomery multiplication in a parallel way by exploiting both the ARM and NEON instruction sets. Specifically, the NEON instruction performed 128-bit integer multiplication and the ARM instruction performed Montgomery reduction, simultaneously. This approach hides the latency for ARM in the NEON instruction set. For a high-speed counter mode of encryptions for both AE functions, we introduced two-level computations. When the tasks were large volume, we switched to the NEON instruction to execute the encryption operations. Otherwise, we performed the encryptions on the ARM module.

The Effect of Recycled Coarse Aggregates Replacement Level on Localized Fracture and Acoustic Emission of Concrete in Compression (순환굵은골재 치환율에 따른 콘크리트의 압축파괴 및 음향방출특성)

  • Kim, Yun-Su;Yun, Hyun-Do;You, Young-Chan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.249-252
    • /
    • 2006
  • When concrete is subjected to uniaxial compression, the failure process is normally initialed from a localized zone. The localization of failure governs structural behaviors of concrete. In this paper, the compressive strength and failure behavior of recycled coarse aggregate concrete with different replacement level of recycled coarse aggregates are investigated using acoustic emission(AE). AE characteristics of concrete were investigated during the entire loading period. For these purpose, four recycled coarse aggregate replacement level (i.e 0%, 30%, 60% and 100%) were considered in this paper. Result from this study show AE signal, AE method can apply to investigate a compressive failure mode according to recycled coarse replacement level.

  • PDF

A Study on the characteristics of the Signals of AE according to Fracture mode of CFRP (Carbon Fiber Reinforced Plastic(CFRP)복합재의 파괴 거동에 따른 Acoustic Emission(AE)신호 특성에 관한 연구)

  • Lee, Kyung-Won;Kim, Jong-Hyun;Kim, Jae-Seong;Lee, Bo-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.4
    • /
    • pp.42-47
    • /
    • 2009
  • Recently, the wide range of the composite materials is used for the making airplanes, trains and automobiles body for the lightweight. Despite having complex structures, composite materials usually have well defined mechanical characteristics. However, composite materials are difficult to understand the fracture mechanism clearly by simple mechanical test. Nondestructive evaluation (NDE) combined with mechanical testing can play a more important role and especially Acoustic Emission Testing (AET) would become known to be a useful tool to assess damage and fracture behavior of composites. In this study The experiment was performed to acquire the acoustic emission signal during tensile test using unidirectional CFRP specimen and the data was analyzed the acoustic emission parameters with the waveform.

  • PDF

Acoustic emission monitoring of damage progression in CFRP retrofitted RC beams

  • Nair, Archana;Cai, C.S.;Pan, Fang;Kong, Xuan
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.1
    • /
    • pp.111-130
    • /
    • 2014
  • The increased use of carbon fiber reinforced polymer (CFRP) in retrofitting reinforced concrete (RC) members has led to the need to develop non-destructive techniques that can monitor and characterize the unique damage mechanisms exhibited by such structural systems. This paper presented the damage characterization results of six CFRP retrofitted RC beam specimens tested in the laboratory and monitored using acoustic emission (AE). The focus of this study was to continuously monitor the change in AE parameters and analyze them both qualitatively and quantitatively, when brittle failure modes such as debonding occur in these beams. Although deterioration of structural integrity was traceable and can be quantified by monitoring the AE data, individual failure mode characteristics could not be identified due to the complexity of the system failure modes. In all, AE was an effective non-destructive monitoring tool that can trace the failure progression in RC beams retrofitted with CFRP. It would be advantageous to isolate signals originating from the CFRP and concrete, leading to a more clear understanding of the progression of the brittle damage mechanism involved in such a structural system. For practical applications, future studies should focus on spectral analysis of AE data from broadband sensors and automated pattern recognition tools to classify and better correlate AE parameters to failure modes observed.

Nondestructive Evaluation of Damage Modes in a Bending Piezoelectric Composite Actuator Based on Waveform and Frequency Analyses (파형 및 주파수해석에 근거한 굽힘 압전 복합재료 작동기 손상모드의 비파괴적 평가)

  • Woo, Sung-Choong;Goo, Nam-Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.870-879
    • /
    • 2007
  • In this study, various damage modes in bending unimorph piezoelectric composite actuators with a thin sandwiched PZT plate during bending fracture tests have been evaluated by monitoring acoustic emission (AE) signals in terms of waveform and peak frequency as well as AE parameters. Three kinds of actuator specimens consisting of woven fabric fiber skin layers and a PZT ceramic core layer are loaded with a roller and an AE activity from the specimen is monitored during the entire loading using an AE transducer mounted on the specimen. AE characteristics from a monolithic PZT ceramic with a thickness of $250{\mu}m$ are examined first in order to distinguish different AE signals from various possible damage modes in piezoelectric composite actuators. Post-failure observations and stress analyses in the respective layers of the specimens are conducted to identify particular features in the acoustic emission signal that correspond to specific types of damage modes. As a result, the signal classification based on waveform and peak frequency analyses successfully describes the failure process of the bending piezoelectric composite actuator exhibiting diverse failure mechanisms. Furthermore, it is elucidated that when the PZT ceramic embedded actuators are loaded mechanical bending loads, the failure process of actuator specimens with different lay-up configurations is almost same irrespective of their lay-up configurations.

Damage Behavior of Singly Oriented Ply Fiber Metal Laminate under Concentrated Loading Conditions (집중하중을 받는 일방향 섬유 금속 적층판의 손상 거동)

  • Nam, H.W.;Kim, Y.H.;Jung, S.W.;Jung, C.K.;Han, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.407-412
    • /
    • 2001
  • In this research, damage behavior of singly oriented ply (SOP) fiber metal laminate (FML) subject to concentrated load was studied. The static indentation tests were conducted to study fiber orientation effect on damage behavior of FML. During the static indentation tests, Acoustic Emission technique (AE) was adopted to study damage characteristics of FML. AE signals were obtained by using AE sensor with 150kHz resonance frequency and the signals were compared with indentation curves of FML. As fiber orientation angle increases, the crack initiation load of SOP FML increases because the stiffness induced by fiber orientation is increased. The penetration load of SOP FML is influenced by the deformation tendency and boundary conditions. Cumulative AE counts were well predicted crack initiation and crack propagation and AE amplitude were useful for prediction of damage failure mode. During the matrix cracking, fiber debonding and fiber breakage, AE amplitude has $45{\sim}60dB,\;60{\sim}80dB\;and\;90{\sim}100dB$, respectively.

  • PDF

Acoustic Emission Monitoring of Lightning-Damaged CFRP Laminates during Compression-after-Impact Test

  • Shin, Jae-Ha;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.269-275
    • /
    • 2012
  • Carbon-fiber reinforced plastic(CFRP) laminates made of nano-particle-coated carbon fibers and damaged by a simulated lightning strike were tested under compression-after-impact(CAI) mode, during which the damage progress due to compressive loading has been monitored by acoustic emission(AE). The impact damage was induced not by mechanical loading but by a simulated lightning strike. Conductive nano-particles were coated directly on the fibers, from which CFRP coupons were made. The coupon were subjected to the strikes with a high voltage/current impulse of 10~40 kA within a few ${\mu}s$. The effects of nano-particle coating and the degree of damage induced by the simulated lightning strikes on AE activities were examined, and the relationship between the compressive residual strength and AE behavior has been evaluated in terms of AE event counts and the onset of AE activity with the compressive loading. The degree of impact damage was also measured in terms of damage area by using ultrasonic C-scan images. The assessment during the CAI tests of damaged CFRP showed that AE monitoring appeared to be useful to differentiate the degree of damage hence the mechanical integrity of composite structures damaged by lightning strikes.