• Title/Summary/Keyword: $A^{1,3}$-strain

Search Result 4,870, Processing Time 0.049 seconds

Nanoscale Longitudinal Normal Strain Behavior of ${Si_3}{N_4}$-to-ANSI 304L Brazed Joints under Pure Bending Condition

  • Seo, D.W.;Lim, J.K.
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.46-52
    • /
    • 2004
  • To combine the mechanical advantages of ceramics with those of metals, one often uses both materials within one composite component. But, as known, they have different material properties and fracture behaviors. In this study, a four-point bending test is carried out on $Si_3N_4$ joined to ANSI 304L stainless steel with a Ti-Ag-Cu filler and a Cu interlayer at room temperature to evaluate their longitudinal strain behaviors. And, to detect localized strain, a couple of strain gages are pasted near the joint interfaces of the ceramic and metal sides. The normal strain rates are varied from $3.33{\times}10^5$ to $3.33{\times}10^{-1}s^{-1}$ Within this range, the experimental results showed that the four-point bending strength and the deflection of the interlayer increased with increasing the strain rate.

  • PDF

Development of a New LCF Life Prediction Model of 316L Stainless Steel at Elevated Temperature (316L 스테인리스 강의 고온 저주기 피로 수명식 개발)

  • Hong, Seong-Gu;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.521-527
    • /
    • 2002
  • In this paper, tensile behavior and low cycle fatigue behavior of 316L stainless steel which is currently favored structural material for several high temperature components such as the liquid metal cooled fast breeder reactor (LMFBR) were investigated. Research was performed at 55$0^{\circ}C$, $600^{\circ}C$ and $650^{\circ}C$ since working temperature of 316L stainless steel in a real field is from 40$0^{\circ}C$ to $650^{\circ}C$. From tensile tests performed by strain controls with $1{\times}10^{-3}/s,\; l{\times}10^{ -4}/s \;and\; 1{\times}10/^{ -5}/ s $ strain rates at each temperature, negative strain rate response (that is, strain hardening decreases as strain rate increases) and negative temperature response were observed. Strain rate effect was relatively small compared with temperature effect. LCF tests with a constant total strain amplitude were performed by strain control with a high temperature extensometer at R.T, 55$0^{\circ}C$, $600^{\circ}C$, $650^{\circ}C$ and total strain amplitudes of 0.3%~0.8% were used and test strain rates were $1{times}10^{-2} /s,\; 1{times}10^{-3} /s\; and\; 1{times}10^{-4} /s$. A new energy based LCF life prediction model which can explain the effects of temperature, strain amplitude and strain rate on fatigue life was proposed and its excellency was verified by comparing with currently used models.

Strain dependent magnetic properties of 1T-VSe2 monolayer

  • Jicheol Son;Brahim Marfoua;Jisang Hong
    • Journal of the Korean Physical Society
    • /
    • v.81
    • /
    • pp.133-138
    • /
    • 2022
  • Using the first principles calculations, we investigated the strain dependent magnetic properties of the 1T-VSe2 monolayer (up to ± 3%). We obtained a metallic band structure, and this feature was preserved under both compressive and tensile strain. The pristine system had a magnetic moment of 0.9 µB/unit cell and decreased to 0.68 µB/unit cell under - 3% compressive strain whereas it was increased to 1.03 µB/unit cell under + 3% tensile strain. The 1T-VSe2 monolayer had an in-plane magnetic anisotropy with a value of - 0.48 meV/cell. The in-plane anisotropy features were maintained in both compressive and tensile strains. The orbital resolved magnetic anisotropy indicated that the V atom contributed to the perpendicular magnetic anisotropy while the Se atom had an in-plane anisotropy. We found that the Se dominated the anisotropy. We also calculated the temperature dependent Curie temperature (TC). The pristine structure had a TC of 260 K, and the strain effect enhanced the TC. Particularly, the compressive strain affected further the exchange parameter resulting in substantial enhancement of the Curie temperature where a TC of 570 K was achieved at - 3% strain. Our finding regarding the strained VSe2 could help for further investigation in spintronics and straintronics applications.

STRAIN ON THE LABIAL PLATES AROUND ABUTMENTS SUPPORTING REMOVABLE PARTIAL DENTURES WITH VARIOUS PROSTHETIC DESIGNS: AN IN VITRO STUDY

  • Kim, Seong-Kyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.3
    • /
    • pp.322-330
    • /
    • 2005
  • Statement of problem. In distal extension removable partial denture, the preservation of health of abutment teeth is very important, but abutment teeth are subjected to unfavorable stress. Purpose. The purpose of this study was to investigate the biomechanical effects of mandibular removable partial dentures with various prosthetic designs using strain gauge analysis. Material and methods. Artificial teeth of both canines were anchored bilaterally in a mandibular edentulous model made of resin. Bilateral distal extension removable partial dentures with splinted and unsplinted abutments were fabricated. Group 1 : Clasp-retained mandibular removable partial denture with unsplinted abuhnents Group 2 : Clasp-retained mandibular removable partial denture with splinted abutments by 6-unit bridge Group 3 : Bar-retained mandibular removable partial denture Strain gauges were bonded on the labial plate of the mandibular resin model, approximately 2 mm close to the abutments. Two vertical experimental loadings (100N and 200N) were applied subsequently via two miniature load cells that were placed at mandibular first molar regions. Strain measurements were performed and simultaneously monitored from a computer connected to data acquisition system. For within-group evaluations, t-test was used to compare the strain values and for between-group comparisons, a one-way analysis of variance (ANOVA) was used and Duncan test was used as post hoc comparisons. Results. Strain values increased as the applied load increased from 100N to 200N for all groups (p<.05). The strain values of group 1 and 2 were tensile under loadings. In contrast, strain values of group 3 were compressive in nature. Under 100N loading, group 1 showed higher strain values than group 3 in absolute quantity (p<.05). Under 200N loading, group 3 showed higher strain values than group 1 and 2 in absolute quantity (p<.05). Group 1 showed higher strain values than group 2 (p<.05). Conclusion. Splinting of two isolated abutments by bridge reduced the peri-abutment strain in comparison with unsplinted abutments. Strain of bar-retained removable partial denture increased much more as applied load increased, but was compressive in nature.

Identification of a Strain of Babesia Isolated from Korean Cattle (한우(韓牛)로부터 분리(分離)한 바베시아 원충(原蟲)의 동정(同定))

  • Jeon, Yeong
    • Korean Journal of Veterinary Research
    • /
    • v.18 no.1
    • /
    • pp.27-31
    • /
    • 1978
  • In order to identify unknown Babesia spp. which was isolated from Korean cattle, the morphology of Korean strain was compared with that of Babesia bigemina (Kochinda strain) and Babesia spp. (Miyake strain). Immunofluorescent technique was used to identify the serological character of the parasites. The results obtained were summarized as follows: 1. Korean strain was morphologically very similar to Babesia spp.(Miyake strain) which mostly showed parallel-bigeminate forms, while B. bigemina (Kochinda strain) was mostly round and oval forms. 2. By the indirect fluorescent antibody technique: a) Anti-Babesia spp. and Korean Babesia spp. sera showed a higher antibody titers with Babesia spp. (Miyake strain) antigen (1:500) than with B. bigemina (Kochinda strain) antigen (1:50). b) Anti-Babesia bigemina sera showed a lower titer with Babesia spp. antigen (1:50) than with B. bigemina antigen (1:250). 3. On the basis of morphological and serological confirmantions, a Babesia strain isolated from a Korean cattle was very similar, if not identical, to Miyake strain of Babesia spp.

  • PDF

Development of Yeast-Fermented Animal Feed (연모교발효사요의 제조 및 사양에 관한 연구)

  • 박명삼
    • Microbiology and Biotechnology Letters
    • /
    • v.3 no.3
    • /
    • pp.123-134
    • /
    • 1975
  • Out of 96 yeast strains isolated from various natural habitats, five strains were screened based on their ability to ferment agricultural biproducts such as rice-, barley-and wheat-bran, and sawdust. These were identified as Hansenula anomala var anomala, Candide utilis, C. pelliculosa, Debaryomyces hansenii, and Irpex lacteus. Using these yeasts the above mentioned agricultural biproducts were fermented in various combinations. The fermented product was fed to 180 male Starcroses for eight weeks and obtained a body weight increase of 15.1g a day, while the unfermented control feed increased 10.5g a day.

  • PDF

The Influence of Strain Rates on the $CH_4/C_2HCl_3/Air$ Counterflow Nonpremixed Flames ($CH_4/C_2HCl_3/Air$ 대향류 비예혼합 화염에서 스트레인율의 영향)

  • Lee, Ki-Yong
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.7-18
    • /
    • 2000
  • Numerical simulations of counterflow non-premixed $CH_4/C_2HCl_3/Air$ flames added 8%(by volume) C2HCl3 on the fuel side are conducted at atmospheric pressure using a detailed chemical reaction mechanism in order to understand the effect of strain rates. A detailed sensitivity analysis is also performed in order to assess the relative influence of each reaction on the flame established at a strain rate of 200s-1. The structure of flames (i.e., temperature, velocity, and concentration of species) established at both a strain rate of 150s-1 and 300s-1 are investigated. As the strain rate increases, the "flame zone" is restricted to a narrower range and the position of maximum temperature is shifted to the fuel side. The concentrations of major species, H2O, CO, H2, HCl, Cl2, and Cl are decreased with increased strain rate. The reaction involving chlorine, CH4 + Cl $\rightarrow$ CH3 + HCl, instead of the reaction, CH4 + H $\rightarrow$ CH3 + H2 influences the consumption of methane. C2HCl3 + OH $\rightarrow$ CHCl2 + CHOCl and HCl + OH $\rightarrow$ H2O + Cl, are major reactions, through which OH radicals are consumed.

  • PDF

Biological Control of Arge Captiva, Arge Pagana Papana, and Arge Similis with Entomopathogenic Nematodes (곤충병원성 선충을 이용한 홍가슴루리등에잎벌(Arge captiva), 장미등에잎벌(Arge pagana papana) 및 극동등에잎벌(Arge similis)의 생물적 방제)

  • Yang, Jae Yun;Kim, Hyeong Hwan;Lee, DongWoon;Lee, Sang Myeong;Shin, Hyeon Chul;Choo, Ho Yul
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • Entomopathogenic nematodes (Heterorhabditis sp. Gyeongsan strain, Steinernema carpocapsae GSN1 strain, S. feltiae Monteri strain, S. glaseri Dongrae strain, S. longicaudum Nonsan strain and S. monticolum Jiri strain) were evaluated for the environmentally sound control of sawfly, Arge captiva, A. pagana pagana and A. similis in the laboratory and pot. The corrected mortality of 3rd instar of Arge captiva larva was 100% at 5 days after treatment with S. carpocapsae GSN1 strain and S. feltiae Monteri strain in Petri dish. The mean numbers of established infective juveniles (Ijs) of S. glaseri Dongrae and S. carpocapsae GSN1 strain in a Arge captiva larva were 10.2 and 4.2 Ijs/larva, respectively. Pathogenicity of S. carpocapsae GSN1 strain was different larval stage, i.e., $LC_{50}$ value of S. carpocapsae GSN1 strain against 2nd, 3rd and 4th instar of A. pagana pagana was 11.5, 9.3, and 8.4 Ijs, respectively. Mortality of Arge captiva, A. pagana pagana and A. similis were 72.5, 85.0 and 85.0% by S. carpocapsae GSN1 strain at the $2{\times}10^9Ijs/ha$, respectively, in the pot.

팔프 및 제지공장 폐수의 처리에 관한 미생물학적 연구 1

  • 홍순우;하영칠;강영화
    • Korean Journal of Microbiology
    • /
    • v.10 no.1
    • /
    • pp.9-28
    • /
    • 1972
  • 1. To get the suitable yeasts for the tratment of waste liquor from pulp and paper industries, the 162 yeasts were isolated from the waste liquor, decayed trees and sewage (1, 7, 8, 9, 1971). 17 species were chosen by its ability to assimilate the carbon compounds and indentified. 2. All of the strain was increased its growing ability by agitation. In particular, the strain 912, strain 613, strain 100, strain 732 showed excellent high productive ratio(A/$A_{0}$). 3. The optimum temperature of the strains rangel $27^{\circ}C$ and $30^{\circ}C$. 4. Most of the strain was grown actively in 10C/5N-composition and strain 113, strain 432, strain 735, strain 936, and strain 912 showed its optimum growing in 15C/5N-composition and 5C/5N-composition, respectively. 5. The optimum pH of the strains lay within range pH 4.5-6. Effect of the variation of pH on the growth was nearly negligible within this range. 6. The strain 912, strain 100, strain 613, strain 311, strain 235, and strain 732 were expected for the utilization to the treatment of the waste liquor from pulp and paper industries.

  • PDF

THE EFFECT OF MONOMER TO POWDER RATIO ON POLYMERIZATION SHRINKAGE-STRAIN KINETICS OF POLYMER-BASED PROVISIONAL CROWN AND FIXED PARTIAL DENTURE MATERIALS

  • Kim, Sung-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.735-742
    • /
    • 2007
  • Statement of problem. Although a number of previous investigations have been carried out on the polymerization shrinkage-strain kinetics of provisional crown and fixed partial denture (FPD) materials, the effect of the changes of liquid monomer to powder ratio on its polymerization shrinkage-strain kinetics has not been reported. Purpose. The purpose of this study was to investigate the influence of liquid monomer to powder ratio of polymer-based provisional crown and FPD materials on the polymerization shrinkage-strain kinetics. Material and methods. Chemically activated acrylic provisional materials (Alike, Jet, Snap) were investigated. Each material was mixed with different liquid monomer to powder ratios by volume (1.0:3.0, 1.0:2.5, 1.0:2.0, 1.0:1.5, 1.0:1.0). Time dependent polymerization shrinkage- strain kinetics of all materials was measured by the bonded-disk method as a function of time at $23^{\circ}C$. Five recordings were taken for each ratio. The results were statistically analyzed using one-way ANOVA and the multiple comparison Scheffe test at the significance level of 0.05. Trends were also examined by linear regression. Results. At 5 minutes after mixing, the polymerization shrinkage-strains of all materials ranged from only 0.01% to 0.49%. At 10 minutes, the shrinkage-strain of Alike was the highest, 3.45% (liquid monomer to powder ratio=1.0:3.0). Jet and Snap were 2.69% (1.0:2.0) and 1.58% (1.0:3.0), respectively (P>0.05). Most shrinkage (94.3%-96.5%) occurred at 30 minutes after mixing for liquid monomer to powder ratio, ranging from 1.0:3.0 to 1.0:1.0. The highest polymerization shrinkage-strain values were observed for the liquid monomer to powder ratio of 1.0:3.0. At 120 minutes after mixing, the shrinkage-strain values were 4.67%, 4.18%, and 3.07% for Jet, Alike, and Snap, respectively. As the liquid monomer to powder ratio increased, the shrinkage-strain values tend to be decreased linearly (r=-0.769 for Alike, -0.717 for Jet, -0.435 for Snap, $r^2=0.592$ for Alike, 0.515 for Jet, 0.189 for Snap; P<0.05). Conclusion. The increase of the liquid monomer to powder ratio from 1.0:3.0 to 1.0:1.0 had a significant effect on the shrinkage-strain kinetics of polymer-based crown and FPD materials investigated. This increased the working time and decreased the shrinkage-strain during polymerization.