• Title/Summary/Keyword: $A^*$알고리즘

Search Result 30,692, Processing Time 0.062 seconds

Development of Analytic Hierarchy Process or Solving Dependence Relation between Multicriteria (다기준 평가항목간 중복도를 반영한 AHP 기법 개발)

  • 송기한;홍상연;정성봉;전경수
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.7
    • /
    • pp.15-22
    • /
    • 2002
  • Transportation project appraisal should be precise in order to increase the social welfare and efficiency, and it has been evaluated by only a single criterion analysis such as benefit/cost analysis. However, this method cannot assess some qualitative items, and cannot get a proper solution for the clash of interests among various groups. Therefore, the multi-criteria analysis, which can control these problems, is needed, and then Saaty has developed one of these methods, AHP(Analytic Hierarchy Process) method. In AHP, the project is evaluated through weighted score of the criteria and the alternatives, which is surveyed by a questionnaire of specialists. It is based on some strict suppositions such as reciprocal comparison, homogeneity, expectation, independence relationship between multi-criteria, but supposing that each criterion has independence relation with others is too difficult in two reasons. First, in real situation, there cannot be perfect independence relationship between standards. Second, individuals, even though they are specialists of that area, do not feel the degree of independence relation as same as others. This paper develops a modified AHP method for solving this dependence relationship between multi-criteria. First of all. in this method, the degree of dependence relationship between multi-criteria that the specialist feels is surveyed and included to the weighted score of multi-criteria This study supposes three methods to implement this idea. The first model products the degree of dependence relationship in the first step for calculating the weighted score, and the others adjust the result of weighted score from the basic AHP method to the dependence relationship. One of the second methods distributes the cross weighted score to each standard by constant ratio, and the other splits them using Fuzzy measure such as Bel and Pl. Finally, in order to validate these methods, this paper applies them to evaluate the alternatives which can control public resentments against Korean rail path in a city area.

Recent Changes in Bloom Dates of Robinia pseudoacacia and Bloom Date Predictions Using a Process-Based Model in South Korea (최근 12년간 아까시나무 만개일의 변화와 과정기반모형을 활용한 지역별 만개일 예측)

  • Kim, Sukyung;Kim, Tae Kyung;Yoon, Sukhee;Jang, Keunchang;Lim, Hyemin;Lee, Wi Young;Won, Myoungsoo;Lim, Jong-Hwan;Kim, Hyun Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.3
    • /
    • pp.322-340
    • /
    • 2021
  • Due to climate change and its consequential spring temperature rise, flowering time of Robinia pseudoacacia has advanced and a simultaneous blooming phenomenon occurred in different regions in South Korea. These changes in flowering time became a major crisis in the domestic beekeeping industry and the demand for accurate prediction of flowering time for R. pseudoacacia is increasing. In this study, we developed and compared performance of four different models predicting flowering time of R. pseudoacacia for the entire country: a Single Model for the country (SM), Modified Single Model (MSM) using correction factors derived from SM, Group Model (GM) estimating parameters for each region, and Local Model (LM) estimating parameters for each site. To achieve this goal, the bloom date data observed at 26 points across the country for the past 12 years (2006-2017) and daily temperature data were used. As a result, bloom dates for the north central region, where spring temperature increase was more than two-fold higher than southern regions, have advanced and the differences compared with the southwest region decreased by 0.7098 days per year (p-value=0.0417). Model comparisons showed MSM and LM performed better than the other models, as shown by 24% and 15% lower RMSE than SM, respectively. Furthermore, validation with 16 additional sites for 4 years revealed co-krigging of LM showed better performance than expansion of MSM for the entire nation (RMSE: p-value=0.0118, Bias: p-value=0.0471). This study improved predictions of bloom dates for R. pseudoacacia and proposed methods for reliable expansion to the entire nation.

Development of a Storage Level and Capacity Monitoring and Forecasting Techniques in Yongdam Dam Basin Using High Resolution Satellite Image (고해상도 위성자료를 이용한 용담댐 유역 저수위/저수량 모니터링 및 예측 기술 개발)

  • Yoon, Sunkwon;Lee, Seongkyu;Park, Kyungwon;Jang, Sangmin;Rhee, Jinyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1041-1053
    • /
    • 2018
  • In this study, a real-time storage level and capacity monitoring and forecasting system for Yongdam Dam watershed was developed using high resolution satellite image. The drought indices such as Standardized Precipitation Index (SPI) from satellite data were used for storage level monitoring in case of drought. Moreover, to predict storage volume we used a statistical method based on Principle Component Analysis (PCA) of Singular Spectrum Analysis (SSA). According to this study, correlation coefficient between storage level and SPI (3) was highly calculated with CC=0.78, and the monitoring and predictability of storage level was diagnosed using the drought index calculated from satellite data. As a result of analysis of principal component analysis by SSA, correlation between SPI (3) and each Reconstructed Components (RCs) data were highly correlated with CC=0.87 to 0.99. And also, the correlations of RC data with Normalized Water Surface Level (N-W.S.L.) were confirmed that has highly correlated with CC=0.83 to 0.97. In terms of high resolution satellite image we developed a water detection algorithm by applying an exponential method to monitor the change of storage level by using Multi-Spectral Instrument (MSI) sensor of Sentinel-2 satellite. The materials of satellite image for water surface area detection in Yongdam dam watershed was considered from 2016 to 2018, respectively. Based on this, we proposed the possibility of real-time drought monitoring system using high resolution water surface area detection by Sentinel-2 satellite image. The results of this study can be applied to estimate of the reservoir volume calculated from various satellite observations, which can be used for monitoring and estimating hydrological droughts in an unmeasured area.

An Outlier Detection Using Autoencoder for Ocean Observation Data (해양 이상 자료 탐지를 위한 오토인코더 활용 기법 최적화 연구)

  • Kim, Hyeon-Jae;Kim, Dong-Hoon;Lim, Chaewook;Shin, Yongtak;Lee, Sang-Chul;Choi, Youngjin;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.265-274
    • /
    • 2021
  • Outlier detection research in ocean data has traditionally been performed using statistical and distance-based machine learning algorithms. Recently, AI-based methods have received a lot of attention and so-called supervised learning methods that require classification information for data are mainly used. This supervised learning method requires a lot of time and costs because classification information (label) must be manually designated for all data required for learning. In this study, an autoencoder based on unsupervised learning was applied as an outlier detection to overcome this problem. For the experiment, two experiments were designed: one is univariate learning, in which only SST data was used among the observation data of Deokjeok Island and the other is multivariate learning, in which SST, air temperature, wind direction, wind speed, air pressure, and humidity were used. Period of data is 25 years from 1996 to 2020, and a pre-processing considering the characteristics of ocean data was applied to the data. An outlier detection of actual SST data was tried with a learned univariate and multivariate autoencoder. We tried to detect outliers in real SST data using trained univariate and multivariate autoencoders. To compare model performance, various outlier detection methods were applied to synthetic data with artificially inserted errors. As a result of quantitatively evaluating the performance of these methods, the multivariate/univariate accuracy was about 96%/91%, respectively, indicating that the multivariate autoencoder had better outlier detection performance. Outlier detection using an unsupervised learning-based autoencoder is expected to be used in various ways in that it can reduce subjective classification errors and cost and time required for data labeling.

Smart farm development strategy suitable for domestic situation -Focusing on ICT technical characteristics for the development of the industry6.0- (국내 실정에 적합한 스마트팜 개발 전략 -6차산업의 발전을 위한 ICT 기술적 특성을 중심으로-)

  • Han, Sang-Ho;Joo, Hyung-Kun
    • Journal of Digital Convergence
    • /
    • v.20 no.4
    • /
    • pp.147-157
    • /
    • 2022
  • This study tried to propose a smart farm technology strategy suitable for the domestic situation, focusing on the differentiation suitable for the domestic situation of ICT technology. In the case of advanced countries in the overseas agricultural industry, it was confirmed that they focused on the development of a specific stage that reflected the geographical characteristics of each country, the characteristics of the agricultural industry, and the characteristics of the people's demand. Confirmed that no enemy development is being performed. Therefore, in response to problems such as a rapid decrease in the domestic rural population, aging population, loss of agricultural price competitiveness, increase in fallow land, and decrease in use rate of arable land, this study aims to develop smart farm ICT technology in the future to create quality agricultural products and have price competitiveness. It was suggested that the smart farm should be promoted by paying attention to the excellent performance, ease of use due to the aging of the labor force, and economic feasibility suitable for a small business scale. First, in terms of economic feasibility, the ICT technology is configured by selecting only the functions necessary for the small farm household (primary) business environment, and the smooth communication system with these is applied to the ICT technology to gradually update the functions required by the actual farmhouse. suggested that it may contribute to the reduction. Second, in terms of performance, it is suggested that the operation accuracy can be increased if attention is paid to improving the communication function of ICT, such as adjusting the difficulty of big data suitable for the aging population in Korea, using a language suitable for them, and setting an algorithm that reflects their prediction tendencies. Third, the level of ease of use. Smart farms based on ICT technology for the development of the Industry6.0 (1.0(Agriculture, Forestry) + 2.0(Agricultural and Water & Water Processing) + 3.0 (Service, Rural Experience, SCM)) perform operations according to specific commands, finally suggested that ease of use can be promoted by presetting and standardizing devices based on big data configuration customized for each regional environment.

Comparative Analysis of the Keywords in Taekwondo News Articles by Year: Applying Topic Modeling Method (태권도 뉴스기사의 연도별 주제어 비교분석: 토픽모델링 적용)

  • Jeon, Minsoo;Lim, Hyosung
    • Journal of Digital Convergence
    • /
    • v.19 no.11
    • /
    • pp.575-583
    • /
    • 2021
  • This study aims to analyze Taekwondo trends according to news articles by year by applying topic modeling. In order to examine the Taekwondo trend through media reports, articles including news articles and Taekwondo specialized media articles were collected through Big Kinds of the Korea Press Foundation. The search period was divided into three sections: before 2000, 2001~2010, and 2011~2020. A total of 12,124 items were selected as research data. For topic analysis, pre-processing was performed, and topic analysis was performed using the LDA algorithm. In this case, python 3 was applied for all analysis. First, as a result of analyzing the topics of media articles by year, 'World' was the most common keyword before 2000. 'South and North Korea' was next common and 'Olympic' was the third commonest topic. From 2001 to 2010, 'World' was the most common topic, followed by 'Association' and 'World Taekwondo'. From 2011 to 2020, 'World', 'Demonstration', and 'Kukkiwon' was the most common topic in that order. Second, as a result of analyzing news articles before 2000 by topic modeling, topics were divided into two categories. Specifically, Topic 1 was selected as 'South-North Korea sports exchange' and Topic 2 was selected as 'Adoption of Olympic demonstration events'. Third, as a result of analyzing news articles from 2001 to 2010 by topic modeling, three topics were selected. Topic 1 was selected as 'Taekwondo Demonstration Performance and Corruption', Topic 2 was selected as 'Muju Taekwondo Park Creation', and Topic 3 was selected as 'World Taekwondo Festival'. Fourth, as a result of analyzing news articles from 2011 to 2020 by topic modeling, three topics were selected. Topic 1 was selected as 'Successful Hosting of the 2018 Pyeongchang Winter Olympics', Topic 2 was selected as 'North-South Korea Taekwondo Joint Demonstration Performance', and Topic 3 was selected as '2017 Muju World Taekwondo Championships'.

A Statistical Analysis of Phenotypic Diversity Based on Genetic Traits in Barley Germplasms (특성평가 정보를 활용한 보리 유전자원 형태적 형질 다양성의 통계적 분석)

  • Yu, Dong Su;Shin, Myoung-Jae;Park, Jin-Cheon;Kang, Manjung
    • Korean Journal of Plant Resources
    • /
    • v.35 no.5
    • /
    • pp.641-651
    • /
    • 2022
  • The biodiversity research of barley, a functional food, is proceeding to conserve germplasms and develop new cultivar of barley to improve its functional effects. In this study, with 25,104 barley germplasms in the National Agrobiodiversity Center, South Korea, the biodiversity index of species was much lower (1.17) than the origins (24.73) because of the presence of a biased species, Hordeum vulgare subsp. vulgare, but the species and origin of germplasms were significantly different with regard to genetic traits. In the clustering analysis based on genetic traits, we found that 97% barley germplasms could mostly be distributed between 1~7 clusters out of a total of 15 clusters; 'normal and uzu type', 'lodging', and 'loose smut' were commonly represented in the 1~7 clusters and some clusters showed specific differences in five genetic traits including 'growth habit'. In correlation of each genetic trait, the infection of 'barley yellow mosaic virus' was highly correlated to 'number of grains per spike'. '1000 grain weight' was weakly correlated with seven genetic traits including 'number of grains per spike'. Our analysis for barley's biodiversity can provide a useful guide to the species' phenotypes that need to be collected to conserve biodiversity and to breed new barley varieties.

Visible and SWIR Satellite Image Fusion Using Multi-Resolution Transform Method Based on Haze-Guided Weight Map (Haze-Guided Weight Map 기반 다중해상도 변환 기법을 활용한 가시광 및 SWIR 위성영상 융합)

  • Taehong Kwak;Yongil Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.283-295
    • /
    • 2023
  • With the development of sensor and satellite technology, numerous high-resolution and multi-spectral satellite images have been available. Due to their wavelength-dependent reflection, transmission, and scattering characteristics, multi-spectral satellite images can provide complementary information for earth observation. In particular, the short-wave infrared (SWIR) band can penetrate certain types of atmospheric aerosols from the benefit of the reduced Rayleigh scattering effect, which allows for a clearer view and more detailed information to be captured from hazed surfaces compared to the visible band. In this study, we proposed a multi-resolution transform-based image fusion method to combine visible and SWIR satellite images. The purpose of the fusion method is to generate a single integrated image that incorporates complementary information such as detailed background information from the visible band and land cover information in the haze region from the SWIR band. For this purpose, this study applied the Laplacian pyramid-based multi-resolution transform method, which is a representative image decomposition approach for image fusion. Additionally, we modified the multiresolution fusion method by combining a haze-guided weight map based on the prior knowledge that SWIR bands contain more information in pixels from the haze region. The proposed method was validated using very high-resolution satellite images from Worldview-3, containing multi-spectral visible and SWIR bands. The experimental data including hazed areas with limited visibility caused by smoke from wildfires was utilized to validate the penetration properties of the proposed fusion method. Both quantitative and visual evaluations were conducted using image quality assessment indices. The results showed that the bright features from the SWIR bands in the hazed areas were successfully fused into the integrated feature maps without any loss of detailed information from the visible bands.

Research Trends of Health Recommender Systems (HRS): Applying Citation Network Analysis and GraphSAGE (건강추천시스템(HRS) 연구 동향: 인용네트워크 분석과 GraphSAGE를 활용하여)

  • Haryeom Jang;Jeesoo You;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.57-84
    • /
    • 2023
  • With the development of information and communications technology (ICT) and big data technology, anyone can easily obtain and utilize vast amounts of data through the Internet. Therefore, the capability of selecting high-quality data from a large amount of information is becoming more important than the capability of just collecting them. This trend continues in academia; literature reviews, such as systematic and non-systematic reviews, have been conducted in various research fields to construct a healthy knowledge structure by selecting high-quality research from accumulated research materials. Meanwhile, after the COVID-19 pandemic, remote healthcare services, which have not been agreed upon, are allowed to a limited extent, and new healthcare services such as health recommender systems (HRS) equipped with artificial intelligence (AI) and big data technologies are in the spotlight. Although, in practice, HRS are considered one of the most important technologies to lead the future healthcare industry, literature review on HRS is relatively rare compared to other fields. In addition, although HRS are fields of convergence with a strong interdisciplinary nature, prior literature review studies have mainly applied either systematic or non-systematic review methods; hence, there are limitations in analyzing interactions or dynamic relationships with other research fields. Therefore, in this study, the overall network structure of HRS and surrounding research fields were identified using citation network analysis (CNA). Additionally, in this process, in order to address the problem that the latest papers are underestimated in their citation relationships, the GraphSAGE algorithm was applied. As a result, this study identified 'recommender system', 'wireless & IoT', 'computer vision', and 'text mining' as increasingly important research fields related to HRS research, and confirmed that 'personalization' and 'privacy' are emerging issues in HRS research. The study findings would provide both academic and practical insights into identifying the structure of the HRS research community, examining related research trends, and designing future HRS research directions.

Detection of Wildfire Burned Areas in California Using Deep Learning and Landsat 8 Images (딥러닝과 Landsat 8 영상을 이용한 캘리포니아 산불 피해지 탐지)

  • Youngmin Seo;Youjeong Youn;Seoyeon Kim;Jonggu Kang;Yemin Jeong;Soyeon Choi;Yungyo Im;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1413-1425
    • /
    • 2023
  • The increasing frequency of wildfires due to climate change is causing extreme loss of life and property. They cause loss of vegetation and affect ecosystem changes depending on their intensity and occurrence. Ecosystem changes, in turn, affect wildfire occurrence, causing secondary damage. Thus, accurate estimation of the areas affected by wildfires is fundamental. Satellite remote sensing is used for forest fire detection because it can rapidly acquire topographic and meteorological information about the affected area after forest fires. In addition, deep learning algorithms such as convolutional neural networks (CNN) and transformer models show high performance for more accurate monitoring of fire-burnt regions. To date, the application of deep learning models has been limited, and there is a scarcity of reports providing quantitative performance evaluations for practical field utilization. Hence, this study emphasizes a comparative analysis, exploring performance enhancements achieved through both model selection and data design. This study examined deep learning models for detecting wildfire-damaged areas using Landsat 8 satellite images in California. Also, we conducted a comprehensive comparison and analysis of the detection performance of multiple models, such as U-Net and High-Resolution Network-Object Contextual Representation (HRNet-OCR). Wildfire-related spectral indices such as normalized difference vegetation index (NDVI) and normalized burn ratio (NBR) were used as input channels for the deep learning models to reflect the degree of vegetation cover and surface moisture content. As a result, the mean intersection over union (mIoU) was 0.831 for U-Net and 0.848 for HRNet-OCR, showing high segmentation performance. The inclusion of spectral indices alongside the base wavelength bands resulted in increased metric values for all combinations, affirming that the augmentation of input data with spectral indices contributes to the refinement of pixels. This study can be applied to other satellite images to build a recovery strategy for fire-burnt areas.