• Title/Summary/Keyword: $6{\times}6$ Combat Vehicle

Search Result 3, Processing Time 0.016 seconds

A Study on the Appication of Semi-Active Supension Units for a Combat Vehicle by Using HILS (HILS를 활용한 전투차량의 반능동 현수장치 적용에 관한 연구)

  • Kim, Chi-Ung;Kim, Moon-June;Rhee, Eun-Jun;Lee, Kyoung-Hoon;Woo, Kwan-Je
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.967-975
    • /
    • 2010
  • There have been a lot of efforts on the improvement for the ride comfort and handling stability of the combat vehicles. Especially most of vehicles for military purpose have bad inertial condition and severe operating condition such as the rough road driving, and need a high mobility in the emergency status. It is necessary to apply the controlled suspension system in order to improve the vehicle mobile stability and ride comfort ability of crews. A feasibility study is performed on the application of the semi-active suspension system with a magneto-rheological controlled shock absorber for a $6{\times}6$ combat vehicle. First, the dynamic simulation model of the vehicle including the control model for the semi-active suspension system was executed. Based on this model, a hardware-in-the-loop simulation(HILS) system which has a semi-active suspension controller hardware was constructed. After full vehicle simulations were performed in virtual proving courses with this system, the semi-active suspension system was proven to give better ride comfort and handling stability in comparison with the conventional passive suspension system.

Flow Visualization Study on Vortices over a Stealth UCAV Configuration (스텔스 무인전투기 형상의 와류 거동에 대한 흐름가시화 연구)

  • Kang, Seung-Hee;Lee, Do-Kwan;Hyun, Jae-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.467-473
    • /
    • 2007
  • Flow visualization study to qualitatively define the flow field over a stealth UCAV(Uninhabited Combat Air Vehicle) configuration in a water tunnel has been conducted to clarify the basic aerodynamic performance. The test was performed at freestream velocity of 12.7 cm/sec which was corresponding to a Reynolds number of $1.4{\times}10^4$ based on mean aerodynamic chord. The development and breakdown of vortices illuminated by using dye were compared to the previous force and moment data. It was shown that the effect of the vortices generated by the main-body and junction are dominant in the low angle-of-attack region. However, in the high angle-of-attack region, the vortex generated by the fore-body mainly influenced the aerodynamic performance of the model.

A Method of Obstacle Detection in the Dust Environment for Unmanned Ground Vehicle (먼지 환경의 무인차량 운용을 위한 장애물 탐지 기법)

  • Choe, Tok-Son;Ahn, Seong-Yong;Park, Yong-Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1006-1012
    • /
    • 2010
  • For the autonomous navigation of an unmanned ground vehicle in the rough terrain and combat, the dust environment should necessarily be overcome. Therefore, we propose a robust obstacle detection methodology using laser range sensor and radar. Laser range sensor has a good angle and distance accuracy, however, it has a weakness in the dust environment. On the other hand, radar has not better the angle and distance accuracy than laser range sensor, it has a robustness in the dust environment. Using these characteristics of laser range sensor and radar, we use laser range sensor as a main sensor for normal times and radar as a assist sensor for the dust environment. For fusion of laser range sensor and radar information, the angle and distance data of the laser range sensor and radar are separately transformed to the angle and distance data of virtual range sensor which is located in the center of the vehicle. Through distance comparison of laser range sensor and radar in the same angle, the distance data of a fused virtual range sensor are changed to the distance data of the laser range sensor, if the distance of laser range sensor and radar are similar. In the other case, the distance data of the fused virtual range sensor are changed to the distance data of the radar. The suggested methodology is verified by real experiment.