• 제목/요약/키워드: $5-HT_6$ receptor

검색결과 61건 처리시간 0.026초

5-HT1A receptors mediate the analgesic effect of rosavin in a mouse model of oxaliplatin-induced peripheral neuropathic pain

  • Li, Daxian;Park, Sangwon;Lee, Kyungjoon;Jang, Dae Sik;Kim, Sun Kwang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권5호
    • /
    • pp.489-494
    • /
    • 2021
  • Oxaliplatin, a third-generation platinum derivative, is the mainstay of current antineoplastic medications for advanced colorectal cancer therapy. However, peripheral neuropathic complications, especially cold allodynia, undermine the life-prolonging outcome of this anti-cancer agent. Rosavin, a phenylpropanoid derived originally from Rhodiola rosea, exhibits a wide range of therapeutic properties. The present study explored whether and how rosavin alleviates oxaliplatin-induced cold hypersensitivity in mice. In the acetone drop test, cold allodynia behavior was observed from days 3 to 5 after a single injection of oxaliplatin (6 mg/kg, i.p.). Cold allodynia was significantly attenuated following rosavin treatment (10 mg/kg, i.p.). Specific endogenous 5-HT depletion by three consecutive pretreatments with parachlorophenylalanine (150 mg/kg/day, i.p.) abolished the analgesic action of rosavin; this effect was not observed following pretreatment with naloxone (opioid receptor antagonist, 10 mg/kg, i.p.). Furthermore, 5-HT1A receptor antagonist WAY-100635 (0.16 mg/kg, i.p.), but not 5-HT3 receptor antagonist MDL-72222 (1 mg/kg, i.p.), blocked rosavin-induced analgesia. These results suggest that rosavin may provide a novel approach to alleviate oxaliplatin-induced cold allodynia by recruiting the activity of 5-HT1A receptors.

Elucidation of the profound antagonism of contractile action of phenylephrine in rat aorta effected by an atypical sympathomimetic decongestant

  • Rizvic, Eldina;Jankovic, Goran;Savic, Miroslav M.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권4호
    • /
    • pp.385-395
    • /
    • 2017
  • Vasoconstrictive properties of sympathomimetic drugs are the basis of their widespread use as decongestants and possible source of adverse responses. Insufficiently substantiated practice of combining decongestants in some marketed preparations, such are those containing phenylephrine and lerimazoline, may affect the overall contractile activity, and thus their therapeutic utility. This study aimed to examine the interaction between lerimazoline and phenylephrine in isolated rat aortic rings, and also to assess the substrate of the obtained lerimazoline-induced attenuation of phenylephrine contraction. Namely, while lower concentrations of lerimazoline ($10^{-6}M$ and especially $10^{-7}M$) expectedly tended to potentiate the phenylephrine-induced contractions, lerimazoline in higher concentrations ($10^{-4}M$ and above) unexpectedly and profoundly depleted the phenylephrine concentration-response curve. Suppression of NO with NO synthase (NOS) inhibitor $N^w$-nitro-L-arginine methyl ester (L-NAME; $10^{-4}M$) or NO scavanger $OHB_{12}$ ($10^{-3}M$), as well as non-specific inhibition of $K^+$-channels with tetraethylammonium (TEA; $10^{-3}M$), have reversed lerimazoline-induced relaxation of phenylephrine contractions, while cyclooxygenase inhibitor indomethacin ($10^{-5}M$) did not affect the interaction between two vasoconstrictors. At the receptor level, non-selective 5-HT receptor antagonist methiothepin reversed the attenuating effect of lerimazoline on phenylephrine contraction when applied at $3{\times}10^{-7}$ and $10^{-6}M$, but not at the highest concentration ($10^{-4}M$). Neither the 5-$HT_{1D}$-receptor selective antagonist BRL 15572 ($10^{-6}M$) nor 5-$HT_7$ receptor selective antagonist SB 269970 ($10^{-6}M$) affected the lerimazoline-induced attenuation of phenylephrine activity. The mechanism of lerimazoline-induced suppression of phenylephrine contractions may involve potentiation of activity of NO and $K^+$-channels and activation of some methiothepin-sensitive receptors, possibly of the 5-$HT_{2B}$ subtype.

Neuroprotective Effect of 8-OH-DPAT on Long-term Sequelae from Prenatal Ischemia in Rats

  • Lee, Se-Oul;Zhang, Tie-Yuan;Kim, Gun-Tae;Kim, Hee-Soo;Lee, Jong-Doo;Jahng, Jeong-Won;Kim, Dong-Goo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권6호
    • /
    • pp.293-297
    • /
    • 2002
  • The role of 5-hydroxytryptamine $(5-HT)_1A$ receptor activity in prenatal ischemia was studied, by injecting 8-hydroxy-dipropylaminotetraline (8-OH-DPAT; $50{\mu}g/kg,$ s.c.), a $5-HT_1A$ agonist on gestation day 17, and 30 min later inducing transient ischemia by ligating the uterine vessels for 30 min. On postnatal day 95, rats that had experienced prenatal ischemia showed impaired motor coordination and reduced concentration of 5-HT in the cerebellum compared with Sham-operated controls. In addition, they showed increased $5-HT_1A$ receptor densities in the cerebral cortex. Pretreatment with 8-OH-DPAT ameliorated the behavioral and neurochemical sequelae measured in the present study. The results suggest that $5-HT_1A$ receptors protect the brain from ischemic insult and/or facilitate recovery after prenatally experienced ischemia.

지연성 운동장애와 5-$HT_{2A}$ 수용체 유전자 T103C 다형성과의 관계 (Association between Tardive Dyskinesia and T103C Polymorphisms of 5-$HT_{2A}$ Receptor Gene)

  • 한상우;신정원;최태윤;우성일;정한용;정희연;한선호
    • 생물정신의학
    • /
    • 제10권2호
    • /
    • pp.133-140
    • /
    • 2003
  • Objective:Some candidate gene polymorphisms were reported to be associated with tardive dyskinesia (TD). The aim of this study was to investigate the association of the 5-$HT_{2A}$ receptor gene polymorphisms with TD in Korean schizophrenic subjects. Method:Subjects were of 59 schizophrenic patients with TD and 60 schizophrenic patients without TD for studying of 5-$HT_{2A}$ receptor gene polymorphisms. TD was evaluated using the Abnormal Involuntary Movement Scale(AIMS). Genomic DNA was amplified by PCR and digestion with MspI and BsmI. Result:There were no statistically significant differences in the demographic variables, such as age, male to female percentage, duration of illnesses and duration of antipsychotic drug exposure between the TD group and control group. 1) T102C polymorphisms and TD Comparing the TD group and control group, the 102T/C allele was associated with a significantly increased risk for TD (${\chi}^2$=5.560, df=1, p=0.018). 2) Three AIMS categories of TD and T102C genotype. There were statistically significant differences in the three AIMS categories(${\chi}^2$=6.835, df=2, p=0.033). Conclusion:These result suggest 102T/C genotypes of the 5-$HT_{2A}$ receptor gene are related to the development of TD. The 102T/C genotypes were associated with significantly higher AIMS orofacial dyskinesia scores. These findings suggest that the 5-$HT_{2A}$ receptor gene is significantly associated with susceptibility to TD in patients with chronic schizophrenia.

  • PDF

Facilitation of serotonin-induced contraction of rat mesenteric artery by ketamine

  • Park, Sang Woong;Noh, Hyun Ju;Kim, Jung Min;Kim, Bokyung;Cho, Sung-Il;Kim, Yoon Soo;Woo, Nam Sik;Kim, Sung Hun;Bae, Young Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권6호
    • /
    • pp.605-611
    • /
    • 2016
  • Ketamine is an anesthetic with hypertensive effects, which make it useful for patients at risk of shock. However, previous ex vivo studies reported vasodilatory actions of ketamine in isolated arteries. In this study, we reexamined the effects of ketamine on arterial tones in the presence and absence of physiological concentrations of 5-hydroxytryptamine (5-HT) and norepinephrine (NE) by measuring the isometric tension of endothelium-denuded rat mesenteric arterial rings. Ketamine little affected the resting tone of control mesenteric arterial rings, but, in the presence of 5-HT (100~200 nM), ketamine ($10{\sim}100{\mu}M$) markedly contracted the arterial rings. Ketamine did not contract arterial rings in the presence of NE (10 nM), indicating that the vasoconstrictive action of ketamine is 5-HT-dependent. The concentration-response curves (CRCs) of 5-HT were clearly shifted to the left in the presence of ketamine ($30{\mu}M$), whereas the CRCs of NE were little affected by ketamine. The left shift of the 5-HT CRCs caused by ketamine was reversed with ketanserin, a competitive 5-$HT_{2A}$ receptor inhibitor, indicating that ketamine facilitated the activation of 5-$HT_{2A}$ receptors. Anpirtoline and BW723C86, selective agonists of 5-$HT_{1B}$ and 5-$HT_{2B}$ receptors, respectively, did not contract arterial rings in the absence or presence of ketamine. These results indicate that ketamine specifically enhances 5-$HT_{2A}$ receptor-mediated vasoconstriction and that it is vasoconstrictive in a clinical setting. The facilitative action of ketamine on 5-$HT_{2A}$ receptors should be considered in ketamine-induced hypertension as well as in the pathogenesis of diseases such as schizophrenia, wherein experimental animal models are frequently generated using ketamine.

5-Hydroxytryptamine 6 Receptor (5-HT6R)-Mediated Morphological Changes via RhoA-Dependent Pathways

  • Rahman, Md. Ataur;Kim, Hanna;Lee, Kang Ho;Yun, Hyung-Mun;Hong, Jung-Hwa;Kim, Youngjae;Choo, Hyunah;Park, Mikyoung;Rhim, Hyewhon
    • Molecules and Cells
    • /
    • 제40권7호
    • /
    • pp.495-502
    • /
    • 2017
  • The $5-HT_6R$ has been considered as an attractive therapeutic target in the brain due to its exclusive expression in the brain. However, the mechanistic linkage between $5-HT_6Rs$ and brain functions remains poorly understood. Here, we examined the effects of $5-HT_6R$-mediated cell morphological changes using immunocytochemistry, Western blot, and live-cell imaging assays. Our results showed that the activation of $5-HT_6Rs$ caused morphological changes and increased cell surface area in HEK293 cells expressing $5-HT_6Rs$. Treatment with 5-HT specifically increased RhoA-GTP activity without affecting other Rho family proteins, such as Rac1 and Cdc42. Furthermore, live-cell imaging in hippocampal neurons revealed that activation of $5-HT_6Rs$ using a selective agonist, ST1936, increased the density and size of dendritic protrusions along with the activation of RhoA-GTP activity and that both effects were blocked by pretreatment with a selective $5-HT_6R$ antagonist, SB258585. Taken together, our results show that $5-HT_6R$ plays an important role in the regulation of cell morphology via a RhoA-dependent pathway in mammalian cell lines and primary neurons.

Involvement of spinal muscarinic and serotonergic receptors in the anti-allodynic effect of electroacupuncture in rats with oxaliplatin-induced neuropathic pain

  • Lee, Ji Hwan;Go, Donghyun;Kim, Woojin;Lee, Giseog;Bae, Hyojeong;Quan, Fu Shi;Kim, Sun Kwang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권4호
    • /
    • pp.407-414
    • /
    • 2016
  • This study was performed to investigate whether the spinal cholinergic and serotonergic analgesic systems mediate the relieving effect of electroacupuncture (EA) on oxaliplatin-induced neuropathic cold allodynia in rats. The cold allodynia induced by an oxaliplatin injection (6 mg/kg, i.p.) was evaluated by immersing the rat's tail into cold water ($4^{\circ}C$) and measuring the withdrawal latency. EA stimulation (2 Hz, 0.3-ms pulse duration, 0.2~0.3 mA) at the acupoint ST36, GV3, or LI11 all showed a significant anti-allodynic effect, which was stronger at ST36. The analgesic effect of EA at ST36 was blocked by intraperitoneal injection of muscarinic acetylcholine receptor antagonist (atropine, 1 mg/kg), but not by nicotinic (mecamylamine, 2 mg/kg) receptor antagonist. Furthermore, intrathecal administration of $M_2$ (methoctramine, $10{\mu}g$) and $M_3$ (4-DAMP, $10{\mu}g$) receptor antagonist, but not $M_1$ (pirenzepine, $10{\mu}g$) receptor antagonist, blocked the effect. Also, spinal administration of $5-HT_3$ (MDL-72222, $12{\mu}g$) receptor antagonist, but not $5-HT_{1A}$ (NAN-190, $15{\mu}g$) or $5-HT_{2A}$ (ketanserin, $30{\mu}g$) receptor antagonist, prevented the anti-allodynic effect of EA. These results suggest that EA may have a significant analgesic action against oxaliplatin-induced neuropathic pain, which is mediated by spinal cholinergic ($M_2$, $M_3$) and serotonergic ($5-HT_3$) receptors.

Inhibitory Modulation of 5-Hydroxytryptamine on Corticostriatal Synaptic Transmission in Rat Brain Slice

  • Choi, Se-Joon;Chung, Won-Soon;Kim, Ki-Jung;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권6호
    • /
    • pp.295-301
    • /
    • 2003
  • Striatum plays a crucial role in the movement control and habitual learning. It receives an information from wide area of cerebral cortex as well as an extensive serotonergic (5-hydroxytryptamine, 5-HT) input from raphe nuclei. In the present study, the effects of 5-HT to modulate synaptic transmission were studied in the rat corticostriatal brain slice using in vitro extracellular recording technique. Synaptic responses were evoked by stimulation of cortical glutamatergic inputs on the corpus callosum and recorded in the dorsal striatum. 5-HT reversibly inhibited coticostriatal glutamatergic synaptic transmission in a dose-dependent fashion (5, 10, 50, and $10{\mu}M$), maximally reducing in the corticostriatal population spike (PS) amplitude to $40.1{\pm}5.0$% at a concentration of $50{\mu}M$ 5-HT. PSs mediated by non-NMDA glutamate receptors, which were isolated by bath application of the NMDA receptor antagonist, d,l-2-amino-5-phospohonovaleric acid (AP-V), were decreased by application of $50{\mu}M$ 5-HT. However, PSs mediated by NMDA receptors, that were activated by application of zero $Mg^{2+}$ aCSF, were not significantly affected by $50{\mu}M$ 5-HT. To test whether the corticostriatal synaptic inhibitions by 5-HT might involve a change in the probability of neurotransmitter release from presynaptic nerve terminals, we measured the paired-pulse ratio (PPR) evoked by 2 identical pulses (50 ms interpulse interval), and found that PPR was increased ($33.4{\pm}5.2$%) by 5-HT, reflecting decreased neurotransmitter releasing probability. These results suggest that 5-HT may decrease neurotransmitter release probability of glutamatergic corticostriatal synapse and may be able to selectively decrease non-NMDA glutamate receptor-mediated synaptic transmission.

Binding Mode Prediction of 5-Hydroxytryptamine 2C Receptor Ligands by Homology Modeling and Molecular Docking Analysis

  • Ahmed, Asif;Nagarajan, Shanthi;Doddareddy, Munikumar Reddy;Cho, Yong-Seo;Pae, Ae-Nim
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.2008-2014
    • /
    • 2011
  • Serotonin or 5-hydroxytryptamine subtype 2C ($5-HT_{2C}$) receptor belongs to class A amine subfamily of G-protein-coupled receptor (GPCR) super family and its ligands has therapeutic promise as anti-depressant and -obesity agents. So far, bovine rhodopsin from class A opsin subfamily was the mostly used X-ray crystal template to model this receptor. Here, we explained homology model using beta 2 adrenergic receptor (${\beta}$2AR), the model was energetically minimized and validated by flexible ligand docking with known agonists and antagonists. In the active site Asp134, Ser138 of transmembrane 3 (TM3), Arg195 of extracellular loop 2 (ECL2) and Tyr358 of TM7 were found as important residues to interact with agonists. In addition to these, V208 of ECL2 and N351 of TM7 was found to interact with antagonists. Several conserved residues including Trp324, Phe327 and Phe328 were also found to contribute hydrophobic interaction. The predicted ligand binding mode is in good agreement with published mutagenesis and homology model data. This new template derived homology model can be useful for further virtual screening based lead identification.

Effect of ${\gamma}$-mangostin through the inhibition of 5-hydroxytryptamine$_{2A}$ receptors in 5-fluoro-${\alpha}$-methyltryptamine-induced head-twitch responses of mice

  • Nattaya Chairungsrie;Furukawa, Ken-Ichi;Takeshi Tadano;Kensuke Kisara;Yasushi Ohizumi
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1998년도 Proceedings of UNESCO-internetwork Cooperative Regional Seminar and Workshop on Bioassay Guided Isolation of Bioactive Substances from Natural Products and Microbial Products
    • /
    • pp.170-170
    • /
    • 1998
  • In order to discover new types of 5-hydroxytryptamine antagonists, we have devoted our attention to investigating naturally occurring compounds having anti-5HT activity in vitro. Recently, ${\gamma}$-mangostin [1,3,6,7-tetrahydroxy-2,8-bis(3-methyl-2-bytenyl)-9H-xanthen-9-one] from the fruit hull of Garcinia mangostana Linn has been shown to be a selective antagonist for 5-hydroxytryptamine$_{2A}$ receptors in smooth muscle and platelets. It is of interesting that y-mangostin which does not have a nitrogen atom, possesses marked 5-$HT_{2A}$ receptor blocking activity. The present study was undertaken to investigate the effects of ${\gamma}$-mangostin on central 5-HT receptors by using animal behavioural models. Intracerebronventricular injection of ${\gamma}$-mangostin (10-40n mol/mouse) inhibited 5-fluoro-${\alpha}$-methyltryptamin (5-FMT) (45 mg kg$^{-1}$, i.p.)-induced head-twitch response in mice in the presence or absence of citalopram (5-HT-uptake inhibitor). Neither the 5-FMT- nor the 8-hydroxy-2-( di-n-propylamino )tetralin (5-HT$_{1A}$-agonist)-induced 5-HT syndrome (head weaving and hindlimb abduction) was affected by ${\gamma}$-mangostin. The locomotor activity stimulated by 5-FMT through the activation of at-adrenoceptors did not alter in the presence of ${\gamma}$-mangostin. 5-HT-induced inositol phosphates accumulation in mouse brain slices was abolished by ketanserin. ${\gamma}$-Mangostin caused a concentration-dependent inhibition of the inositol phosphates accumulation and the binding of [$^3H$]-spiperone, a specific 5-$HT_{2A}$ receptor antagonist, to mouse brain membranes. Kinetic analysis of the [$^H3$]-spiperone binding revealed that ${\gamma}$-mangostin increased the $_{d}$ value without affecting the $B_{max}$ value, indicating the mode of the competitive nature of the inhibition by ${\gamma}$-mangostin. These results suggest that ${\gamma}$-mangostin inhibits 5-FMT-induced head-twitch response in mice by blocking 5-$HT_{2A}$ receptors not by blocking the release of 5-HT from the central neurone. ${\gamma}$-Mangostin is a promising 5-$HT_{2A}$ receptors antagonist in the central nervous system.m.

  • PDF