• Title/Summary/Keyword: $3{\beta}$-hydroxysteroid dehydrogenase 2

Search Result 16, Processing Time 0.026 seconds

Inhibitory Effects of Curcuminoids on $17{\beta}$-hydroxysteroid Dehydrogenase Type 1 Activity in Animal Livers

  • Lee, Sung-Eun;Park, Byeoung-Soo;Kim, Hye Jin;Lee, Eun-Woo;Yum, Jong Hwa
    • Biomedical Science Letters
    • /
    • v.19 no.2
    • /
    • pp.147-152
    • /
    • 2013
  • 17-${\beta}$-hydroxysteroid dehydrogenase type 1 ($17{\beta}$-HSD type 1) mediates the reaction of $17{\beta}$-estradiol (E2) production from estrone (E1). Inhibitory effects of curcuminoids on $17{\beta}$-HSD type 1 activity were investigated to find a lead compound for treating estrogen-dependent diseases including breast cancer. Among curcuminoids, demethoxycurcumin showed potent inhibitory effect ($IC_{50}=2.7{\mu}M$) on mouse $17{\beta}$-HSD type 1. Curcuminoids also displayed their inhibitory effects on the production of $17{\alpha}$-estradiol which is a carcinogenic metabolite produced by the enzyme. Bisdemethoxycurcumin ($IC_{50}=1.3{\mu}M$) showed potent inhibitory effect on the $17{\alpha}$-estradiol production by chicken $17{\beta}$-HSD type 1. Curcuminoids did not inhibit ERE transcriptional activity with and without E2. Taken together, curcuminoids can be used for treating and preventing E2-dependent diseases via inhibition on $17{\beta}$-HSD type 1 activity.

Inhibitory Activities of Three Compounds from Mucuna birdwoodiana on $3{\alpha}-Hydroxysteroid\;dehydrogenase$ (계혈등(Mucuna birdwoodiana)의 $3{\alpha}-Hydroxysteroid\;dehydrogenase$억제 성분)

  • Kwon, Yong-Soo;Lee, Jin-Hun;Kim, Chang-Min
    • Korean Journal of Pharmacognosy
    • /
    • v.30 no.2
    • /
    • pp.216-221
    • /
    • 1999
  • The NAD(P)-linked $3{\alpha}-Hydroxysteroid$ $dehydrogenase(3{\alpha}-HSD)$ of rat liver cytosol is powerfully inhibited by the non-steroidal anti-inflammatory drugs in rank-order of their therapeutic potency, and this observation has now been developed into a rapid screen for predicting the potency of products that show anti-inflammatory effect. Five-plants were screened by using this method. Among them, BuOH-fraction of Mucuna birdwoodiana showed strong inhibitory effect on $3{\alpha}-HSD$, and three isoflavone compounds were isolated. Inhibitory activates of isolated compounds were compared.

  • PDF

Partial Lipectomy of the Epididymal Fat Alters Expression of the Steroidogenic Enzymes in the Mouse Testis at Different Postnatal Ages

  • Yong-Seung Lee;Ki-Ho Lee
    • Development and Reproduction
    • /
    • v.27 no.4
    • /
    • pp.175-183
    • /
    • 2023
  • The epididymal fat is a type of gonadal adipose tissue, which is localized closely to the testis. Even though it has been suggested that the epididymal fat is necessary for maintenance of spermatogenesis in the testis, the influence of epididymal fat on expression of testicular steroidogenic enzymes has not been examined. In the present research, expressional changes of steroidogenic enzymes in the mouse testis after 2 weeks of the surgical partial lipectomy of epididymal fat at different postnatal ages were determined by real-time polymerase chain reaction analysis. The transcript levels of all molecules at 2 months of postnatal age were significantly increased by the lipectomy of epididymal fat. However, the lipectomy at 5 months of postnatal age resulted in decreases of expression levels of all molecules examined in the testis. Except a reduced transcript level of hydroxysteroid 17-beta dehydrogenase 3, there were no significant changes of expression levels of other steroidogenic enzymes by the lipectomy at 8 months of postnatal age. At 12 months of postnatal age, the lipectomy caused a significant increase of transcript level of steroidogenic acute regulatory protein and a significant decrease of transcript level of hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1, without any expressional change of cytochrome P450 side chain cleavage, hydroxysteroid 17-beta dehydrogenase 3, and hydroxysteroid 17-beta dehydrogenase 3 in the testis. These findings suggest that the substances derived from epididymal fat could differentially influence on expression of steroidogenic enzymes in the testis during postnatal period.

Effects of Moxibustion at the CV5(Serk-Moon) on the Expression of $3{\beta}-Hydroxysteroid\; dehydrogenasa/{\Delta}5-{\Delta}4$ isomerase $(3{\beta}-HSD)$ in Ovary of the Rats (석문(石門)($CV_5$) 애구(艾灸)가 자성(雌性) 백서(白鼠)의 $3{\beta}-hydroxysteroid\;dehydrogenasa/{\Delta}^5-{\Delta}^4$ isomerase $(3{\beta}-HSD)$의 발현(發顯) 양상(樣相)에 미치는 영향(影響))

  • Choi, Young-Sun;Ahn, Sung-Hun;Koo, Sung-Tae;Lee, Mun-Ho;Kim, Kyung-Sik;Sohn, In-Chul
    • The Journal of Korean Medicine
    • /
    • v.20 no.2
    • /
    • pp.63-74
    • /
    • 1999
  • We demonstrated the moxibution on CV5(Serk-Moon) and CV3(Chung-Guk), as we have known contraceptive acupuncture point and pregnancy acupuncture point in oriental medcine, effected on concentration of progesteron and estrogen. As the reports, $3{\beta}-hydroxysteroid\;dehydrogenase/{\Delta}5-{\Delta}4$ isomerase $(3{\beta}-HSD)$ is an enzyme that has catalytic oxidation and isomerase reaction on steroidhormon synthase including progesteron and estrogen. So we observated the concentration and mass of $(3{\beta}-HSD)$ by immuno-chemicalstain, western blot and Enzyme-Linked Immunosorbent Assay in rat ovary. In results, we detected that the mass of $(3{\beta}-HSD)$ decreased significantly in moxibution treated group on CV5($p{\leq}0.05$) in rat ovary and proposed that the moxibution of CV5 make possible to contraception because of blocking estrogen synthesis by $(3{\beta}-HSD)$ decrease. But we didn't know moxibution effects exactly whether is biochemical reaction or thermal reaction on acupuncture point.

  • PDF

Relievable Effect of Alpinetin on Dexamethasone-Induced Skin Aging (Alpinetin의 Dexamethasone으로 유도한 피부 노화 완화 효과)

  • Nam, Jin-Ju;Kim, Youn Joon;Kang, Seunghyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.2
    • /
    • pp.163-171
    • /
    • 2016
  • Steroid hormone, glucocorticoid (GC) has strong anti-inflammatory effects by binding to glucocorticoid receptor (GR) inhibiting the expression of inflammatory genes. Therefore, agents that activate the GR have been used for the treatment of dermatitis. However, the agents have side effects such as skin barrier dysfunction and dermal atrophy, inducing skin damage as well as skin aging. It has been reported that GC is activated by 11 beta-hydroxysteroid dehydrogenase type 1 ($11{\beta}$-HSD1) to increase the activity of the GR. This study aimed to identify natural materials that can effectively inhibit dexamethasone. We found that alpinetin isolated from Alpinia katsumadai extract has a significant effect on this. Alpinetin not only inhibited $11{\beta}$-HSD1 expression, but also suppressed the increase of phosphorylated GR and cortisol concentration. Alpinetin also recovered collagen expression in dexamethasone-treated dermal fibroblasts, and the reduction of dermal thickness in dexamethasnone-treated 3D skin model. These results suggest that alpinetin prevents skin aging induced by the increase of $11{\beta}$-HSD1 expression.

${\gamma}-ray$ Effects on Steroid Hormone Concentration of Mouse Ovarian Follicles (생쥐의 난소내 스테로이드호르몬 농도에 미치는 ${\gamma}$-선의 영향)

  • Lee, Young-Keun;Kim, Jin-Kyu;Yoon, Yong-Dal
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.3
    • /
    • pp.179-188
    • /
    • 1994
  • Mice were whole body irradiated with dose of 2.88Gy and 7.2Gy(Co-60) in order to observe the morphological and functional changes in radio sensitive mouse ovary. Microtechnical sectionates of $7{\mu}m$ thickness from ovary were made for light microscopy and concentrations of progesterone, testosterone and estradiol in ovarian homogenates were analyzed by radioimmunoassay. Gamma radiation resulted in the increase of atretic ratio of preantral and antral follicles, the increase of progesterone concentration in ovarian homogenates, and the low level of testosterone and estradiol. It is suggested that radiation protect the activity of $3{\beta}-HSD$(hydroxysteroid dehydrogenase) and isomerase in the follicular theca cell followed by low level of testosterone and estradiol and thereafter follicular atresia proceed.

  • PDF

Salt-sensitive genes and their relation to obesity (소금민감성유전자와 비만)

  • Cheon, Yong-Pil;Lee, Myoungsook
    • Journal of Nutrition and Health
    • /
    • v.50 no.3
    • /
    • pp.217-224
    • /
    • 2017
  • Purpose: Although it is well known thatmortality and morbidity due to cardiovascular diseases are higher in salt-sensitive subjects than in salt-resistant subjects, their underlying mechanisms related to obesity remain unclear. Here, we focused on salt-sensitive gene variants unrelated to monogenic obesity that interacted with sodium intake in humans. Methods: This review was written based on the modified $3^rd$ step of Khans' systematic review. Instead of the literature, subject genes were based on candidate genes screened from our preliminary Genome-Wide Association Study (GWAS). Finally, literature related to five genes strongly associated with salt sensitivity were analyzed to elucidate the mechanism of obesity. Results: Salt sensitivity is a measure of how blood pressure responds to salt intake, and people are either salt-sensitive or salt-resistant. Otherwise, dietary sodium restriction may not be beneficial for everyone since salt sensitivity may be associated with inherited susceptibility. According to our previous GWAS studies, 10 candidate genes and 11 single nucleotide polymorphisms (SNPs) associated with salt sensitivity were suggested, including angiotensin converting enzyme (ACE), ${\alpha}$-adducin1 (ADD1), angiotensinogen (AGT), cytochrome P450 family 11-subfamily ${\beta}$-2 ($CYP11{\beta}$-2), epithelial sodium channel (ENaC), G-protein b3 subunit (GNB3), G protein-coupled receptor kinases type 4 (GRK4 A142V, GRK4 A486V), $11{\beta}$-hydroxysteroid dehydrogenase type-2 (HSD $11{\beta}$-2), neural precursor cell-expressed developmentally down regulated 4 like (NEDD4L),and solute carrier family 12(sodium/chloride transporters)-member 3 (SLC 12A3). We found that polymorphisms of salt-sensitive genes such as ACE, $CYP11{\beta}$-2, GRK4, SLC12A3, and GNB3 may be positively associated with human obesity. Conclusion: Despite gender, ethnic, and age differences in genetics studies, hypertensive obese children and adults who are carriers of specific salt-sensitive genes are recommended to reduce their sodium intake. We believe that our findings can contribute to the prevention of early-onset of chronic diseases in obese children by facilitating personalized diet-management of obesity from childhood to adulthood.