• Title/Summary/Keyword: ${La_{0.8}}{Ca_{0.2}}{MnO_3}$

Search Result 18, Processing Time 0.029 seconds

Characteristics of La0.2Ca0.8MnO3 Powder and Pellet Prepared by Sol-Gel Process (졸-겔법으로 합성한 La0.2Ca0.8MnO3의 분말과 펠렛의 특성)

  • Jung, Miewon;Lee, Jiyun;Kim, Hyunjung
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.150-152
    • /
    • 2005
  • $La_{0.2}Ca_{0.8}MnO_3$ colossal magnetoresistance (CMR) powders and pellets were synthesized by sol-gel process involving a stable metal chelate complex with acetylacetone. The structural changes of reaction mixture were monitored by FT-IR spectroscopy and X-ray diffractometry. The microstructure of sintered samples and the cation composition of gel powder were studied by FE-SEM/EDS and ICP-AES. The magnetic property was investigated as a function of temperature.

Colossal Magnetoresistance and Mossbauer Studies of La-Ca-Mn-O Compound Doped with $^{57}Fe$ ($^{57}Fe$를 미량 치환한 La-Ca-Mn-O의 초거대자기저항과 Mossbauer분광학연구)

  • 박승일;김성철
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.6
    • /
    • pp.335-340
    • /
    • 1998
  • Colossal magnetoresistance $La_{0.67}Ca_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ material has been produced by a metal-salt routed sol-gel process method. Magnetic properties of $La_{0.67}Ca_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ have been studied with x-ray diffraction, Rutherford back-scattering spectroscopy(RBS), vibrating sample magnetometer, and Mossbauer spectroscopy. Crystalline $La_{0.67}Ca_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ was perovskite cubic structure with a lattice parameter $a_0=3.868$\AA$$. And there was no appreciable change in the value of the lattice parameter when a small amount (x=0.01) of iron was added. However, Mossbauer and VSM data indicate the Curie temperature of the $La_{0.67}Ca_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ decreased from 282 to 270 k and also the saturation magnetization from 84 to 81 emu/g at 77 K. Mossbauer spectra of $La_{0.67}Ca_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ have been taken at various temperatures ranging form 4.2 K to room temperature. Analysis of $^{57}Fe$ Mossbauer data in terms of the local configurations of Mn atoms has permitted the influence of the magnetic hyperfine interactions to be monitored. The isomer shifts show that the charge state of all Fe ions are ferric. The magnetoresistance of $La_{0.67}Ca_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ was about 33 % at semiconductor-metal transition temperature $T_{SC-M}=250K$.

  • PDF

Synthesis and Magnetic Properties of Ruddlesden-Popper Phase $(LaSrCa)_3Mn_2O_7$ (Ruddlesden - Popper상 $(LaSrCa)_3Mn_2O_7$의 합성과 자기적 특성에 관한 연구)

  • Song, Min-Seok;Shin, Jin-Hyun;Bae, Chul-Ho;Park, Jung-Hwan;Lee, Jai-Yeoul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.351-352
    • /
    • 2009
  • 이중의 망간 페로브스카이트 블록을 가진 Ruddlesden-Popper 상 (R-P phase) $Sr_3Mn_2O_7$은 공기중에서 불안정하다. 본 연구에서는 Sr이온 자리에 La, Ca이온을 치환함으로써 R-P상을 안정화 시켰으며, 이들의 결정구조는 Neutron Diffraction 데이터를 이용하여 Rietveld 법으로 정밀화하였다 $La_{1.4}Sr_{0.8}Ca_{0.8}Mn_2O_7$, $La_{1.2}Sr_{0.9}Ca_{0.9}Mn_2O_7$$T_N$이 80K이며 25K에서 spin-glass 변이가 관찰되었다.

  • PDF

Magnetic and transport properties of $La_{0.8}Sr_{0.2}MnO_3/La_{0.8}Ca_{0.2}MnO_3$ bilayer

  • Li, S.F.;Kim, J.B.;Hyun, Y.H.;Lee, Y.P.;Prokhorov, V.G.;Komashko, V.A.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.7 no.1
    • /
    • pp.8-12
    • /
    • 2003
  • The effects of lattice strain on the magnetic and the transport properties of La$_{0.8}$Sr$_{0.2}$MnO$_3$films grown on a LaAlO$_3$ (001) substrate and on a La$_{0.8}$Sr$_{0.2}$MnO$_3$ layer have been studied. It was observed that the metal-insulator and the ferromagnetic transitions turn out to be at higher temperatures for the film deposited on La$_{0.8}$Sr$_{0.2}$MnO$_3$ layer with respect to that on LaAlO$_3$. The dependence of Curie temperature on the bulk and the Jahn-Teller strains has also been determined. determined.

  • PDF

Preparation and Characterization of La0.8Ca0.2MnO3 (La0.8Ca0.2MnO3의 합성 및 특성연구)

  • 정미원;이지윤;김현정
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.5
    • /
    • pp.434-440
    • /
    • 2003
  • The powders of L $a_{0.8}$C $a_{0.2}$Mn $O_3$ Colossal Magnetoresistance (CMR) materials were synthesized by sol-gel process. Lanthanum(H), Calcium(II) and Manganese(III) 2,4-Pentanedionate were dissolved in a mixed binary solution consisted of propionic acid and methanol with PEG (15 wt%) aqueous solution. The progress of reactions was monitored by FT-IR spectroscopy. The Lao scao.2Mn03 gel powders were annealed at various temperatures. The structural changes were investigated by FT-IR, CP/MAS $^{ 13}$C solid state NMR spectroscopy and XRD. The thermochemical property, particle characterization, microstructure of sintered sample, and cation composition of gel powder were studied by TG/DTA, FE-SEM and ICP-AES. The magnetic characterizations were identified through measurement of magnetic moment by VSM.

Oxygen-Deficient Perovskite, (CaLa) (MgMn)O5.43 Prepared Under Oxygen Gas Pressure of 1 Bar (산소 1기압하에서 합성된 산소결함 Perovskite(CaLa)(MgMn)O$_{5.43}$의 물리화학적 특성연구)

  • 최진호;홍승태;김승준
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.8
    • /
    • pp.603-610
    • /
    • 1991
  • An oxygen deficient perovskite (CaLa)(MgMn)O5.43, with the cubic unit cell parameter of 3.826$\AA$, was prepared 115$0^{\circ}C$ for 10 hrs under the ambient oxygen gas pressure. The average oxidation state of manganese was determined to be 3.86 by the iodometric titration, so that the perovskite could be formulated as (CaLa) ({{{{ { MgMn}`_{ chi } ^{II } }}{{{{ { Mn}`_{ y} ^{III } }}{{{{ { Mn}`_{1- chi -y } ^{IV } }})O5.43 (2x+y=0.14). From X-ray photoelectron spectroscopy, the manganese ions in the lattice are mostly tetravalent, but two paramagnetic configurations were observed in the EPR spectrum: One sharp isotropic signal with hyperfines (ΔH 50 G, g=1.997$\pm$0.002 and │A│=82(4)$\times$10-4 cm-1) and a broad isotropic one (ΔH 1600 G, g=1.994$\pm$0.002), those which correspond respectively to Mn(II) and Mn(IV) ions. According to the magnetic susceptibility measurement, it follows the Curie-Weiss law from 20 K up to room temperature with $\mu$eff=5.23 $\mu$B, which is relatively larger than spin-only value({{{{ { mu }`_{eff} ^{s.o } }}=4.04 $\mu$B) due to the effect of weak ferromagnetic coupling. Such a result is in accord with a theory of semicovalence exchange.

  • PDF

$La_{0.7}Ca_{0.3-x}Ba_xMnO_3$ manganites : Local structure and transport properties

  • A.N.Ulyanov;Yang, Dong-Seok;Yu, Seong-Cho
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2003.05a
    • /
    • pp.8-8
    • /
    • 2003
  • Electron-phonon interaction plays a significant role in forming of colossal magnetoresistance effect (CMR). Polaron formation was observed by neutron diffraction and by extended X-ray absorption fine structure (EXAFS) analysis. Local probe as given by the EXAFS is a useful method to study the polaronic charge and its dependence on temperature and ions size. Here we present the EXAFS study of polaronic charge in La/sub 0.7/Ca/sub 0.3-X/Ba/sub X/MnO₃ compositions. The single phase La/sub 0.7/Ca/sub 0.3-X/Ba/sub X/MnO₃ manganites (x=0; 0.03; 0.06, ..., 0.3) were prepared by ceramic technology [1]. The Curie temperature was determined by extrapolation of the temperature dependence of the magnetization (down to zero magnetization). EXAFS experiments were carried out at the 7C EC beam line of the Pohang Light Source (PLS) in Korea. The atomic pair distribution functions (PDF) were obtained by re-regularization method [2] from filtered spectra. The PDF for the x=0.3 sample showed a single peak function and for x=0.0, 0.03, 0.06, 0.09, 0.12 compositions were asymmetric in agreement with a small Jahn-Teller elongation of two (short and long) bonds of the MnO/sub 6/ octahedron. Dispersion, σ/sub Min-O//sup 2/, and asymmetry, σ/sub Min-O//sup 3/, of the Mn-O bond distances varied significantly with x and showed a maximums at x=0.09. The maximum of σ/sub Min-O//sup 2/ is caused by increase of dynamic rms displacements of the Mn-O distances near the T/sub C/. The observed x dependence of σ/sub Min-O//sup 3/ reflects the reduction of charge carriers mobility at approaching to T/sub C/ from low as well as high temperatures.

  • PDF

Magnetoresistance of the Ferromagnetic Combined System

  • Park, Seung-Iel;Kim, Chul Sung
    • Journal of Magnetics
    • /
    • v.9 no.1
    • /
    • pp.5-8
    • /
    • 2004
  • For the ferromagnetic combined samples, results of x-ray diffraction patterns showed no evidence of reaction between the $La_{0.67}Ca_{0.33}MnO_3, La_{0.67}Sr_{0.33}MnO_3$ and $CoFe_2O_4$. For the amount of $CoFe_2O_4$ increased, the Curie temperature of combined samples showed no appreciable change, whereas a metal-semiconductor transition temperature rapidly decreased. For the $La_{0.67}Sr_{0.33}MnO_3$ and 20 wt % $CoFe_2O_4$ combined sample, the metal-semiconductor transition temperature was decreased to 160 K compared with the $La_{0.67}Sr_{0.33}MnO_3$ with 192 K.

Electrochemical properties of $Gd_{0.8}Ca_{0.2}Co_{1-x}Fe_xO_3$ cathodes for medium-temperature SOFC (중간온도형 고체산화물 연료전지의 양극재료로서 $Gd_{0.8}Ca_{0.2}Co_{1-x}Fe_xO_3$의 전기화학특성)

  • Ryu Ji-H.;Jang Jong-H.;Lee Hee-Y.;Oh Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • For the purpose of finding new cathode materials for medium-temperature $(700\~800^{\circ}C)$ solid oxide fuel cells, $Gd_{0.8}Ca_{0.2}Co_{1-x}Fe_xO_3,\;(x=0.0\~0.5)$ are prepared, and their thermal stability and conductivity characteristics are investigated. Also, the cathodic activities are measured after the cathode layer being attached on CGO (cerium-gadolinium oxide) electrolyte disk. The X-ray analyses indicate that the materials prepared by calcining the citrate-gels at $800^{\circ}C$ have the orthorhombic perovskite structure without discernible impurities. The thermal stability of the undoped Co perovskite is so poor that it is decomposed to the individual binary oxide even at $1300^{\circ}C$. But the partially Fe-doped cobaltates exhibit a better thermal stability to retain their structural integrity up to $1400^{\circ}C$. The observation whereby both the undoped and Fe-doped cobaltates melt at ca. $1300^{\circ}C$ leads us to perform the electrode adhesion at <$1300^{\circ}C$. The cathodic activity of $Gd_{0.8}Ca_{0.2}Co_{1-x}Fe_xO_3,\;(x=0.0\~0.5)$, electrodes is superior to $La_{0.9}Sr_{0.1}MnO_3$, among the samples of $x=0.0\~0.5$, the x=0.2 cathode shows the best activity for the oxygen reduction reaction. It is likely that the Fe-doping provides a better thermal stability to the materials but in turn imparts an inferior cathodic activity, such that the optimum trade-off is made at x=0.2 between the two factors. The total electrical conductivity and ion conductivity of $Gd_{0.8}Ca_{0.2}Co_{1-x}Fe_xO_3$, are measured to be 51 S/cm and $6.0\times10^{-4}S/cm\;at\;800^{\circ}C$, respectively. The conductivity values illustrate that the materials are a mixed conductor and the reaction sites can be expanded to the overall electrode surface, thereby providing a better cathodic activity than $La_{0.9}Sr_{0.1}MnO_3$.