• Title/Summary/Keyword: ${La_{0.7}}{Ca_{0.3}}{MnO_3}$

Search Result 63, Processing Time 0.029 seconds

A Study on the Conducting Behavior of La-Ca-Mn-O in the vicinity of Phase Transition Temperature (임계점 부근에서 LCMO의 전도 특성에 대하여)

  • 송하정;김우진;권순주
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.4
    • /
    • pp.179-184
    • /
    • 1998
  • Colossal magnetoresistance is closely related to (but is not) the abrupt change of electrical resistivity in the vicinity of Curie temperature, which is caused by the temperature dependent paramagnetic-ferromagnetic phase transition and concurrent change of electrical conducting mechanism. A resistivity-temperature equation is presented to fully describe the overall behavior, especially the abrupt change. The main ingredients of the equation are a simple effective media theory and a function for the temperature dependent fraction of ferromagnetic phase. The model fits very well to the measured resistivity-temperature curve of $La_{0.7}Ca_{0.3}MnO_3$.

  • PDF

EXAFS study for the ordering of manganese in $La_{0.7}Ca_{0.3-x}Ba_xMnO_3$

  • 양동석
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.12-12
    • /
    • 2002
  • Lanthanum manganites have been extensively studied for the application to magnetic devices since the colossal magnetoresistance of these compounds has been observed [1]. The critical temperatures, Tc, of manganites La/sub 0.7/Ca/sub 0.3-x/Ba/sub x/MnO₃ increased as the content of Ba increased except the abrupt jump near the critical concentration. The step like behavior of the critical temperature for a similar compound has been known to be related to the structural phase transition [2]. To understand the step like behavior of Tc, the EXAFS technique is applied to the La/sub 0.7/Ca/sub 0.3-x/Ba/sub x/MnO₃ compound system. The ordering between the manganese and oxygen was examined by this method. The EXAFS analysis shows that the coordination numbers were not changed before and after the phase transition, the bonding distance between manganese and oxygen is about 1.94 ± 0.02 Å, which is consistent with other work [3] and the Debye waller parameters were about σ²= 0.0037 ± 0.0005 Ų for x=0.0 and x=3.0, respectively. The value of Debye-Waller parameter for x=0.09 is about σ² = 0.0050 ± 0.0005 Ų in about phase transition concentration. Based on the Debye-Waller parameters, it is shown that the ordering between manganese and oxygen is significantly reduced near the phase transition concentration.

  • PDF

Magnetic and transport properties of $La_{0.8}Sr_{0.2}MnO_3/La_{0.8}Ca_{0.2}MnO_3$ bilayer

  • Li, S.F.;Kim, J.B.;Hyun, Y.H.;Lee, Y.P.;Prokhorov, V.G.;Komashko, V.A.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.7 no.1
    • /
    • pp.8-12
    • /
    • 2003
  • The effects of lattice strain on the magnetic and the transport properties of La$_{0.8}$Sr$_{0.2}$MnO$_3$films grown on a LaAlO$_3$ (001) substrate and on a La$_{0.8}$Sr$_{0.2}$MnO$_3$ layer have been studied. It was observed that the metal-insulator and the ferromagnetic transitions turn out to be at higher temperatures for the film deposited on La$_{0.8}$Sr$_{0.2}$MnO$_3$ layer with respect to that on LaAlO$_3$. The dependence of Curie temperature on the bulk and the Jahn-Teller strains has also been determined. determined.

  • PDF

The Magnetic and Magnetocaloric Properties of the Perovskite La0.7Ca0.3Mn1-xNixO3

  • Hua, Sihao;Zhang, Pengyue;Yang, Hangfu;Zhang, Suyin;Ge, Hongliang
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.34-38
    • /
    • 2013
  • This paper studies the effects of the Mn-site substitution by nickel on the magnetic properties and the magnetocaloric properties of $La_{0.7}Ca_{0.3}Mn_{1-x}Ni_xO_3$ (x = 0, 0.05 and 0.1). The orthorhombic crystal structures of the samples are confirmed by the room temperature X-ray diffraction. The dependence of the Curie temperature ($T_C$) and the magnetic entropy change (${\Delta}S_M$) on the Ni doping content was investigated. The samples with x = 0 had the first order phase transition, while the samples with x = 0.05 and 0.1 had the second order phase transition. As the concentration of Ni increased, the maximum entropy change (${\mid}{\Delta}S_M{\mid}_{max}$) decreased gradually, from 2.78 $J{\cdot}kg^{-1}{\cdot}K^{-1}$ (x = 0) to 1.02 $J{\cdot}kg^{-1}{\cdot}K^{-1}$ (x = 0.1), in a magnetic field change of 15 kOe. The measured value of $T_C$ was 185 K, 150 K and 145 K for x = 0, 0.05 and 0.1, respectively. The phase transition temperatures became wider as x increased. It indicates that the Mn-site substitution by Ni may be used to tailor the Curie temperature in $La_{0.7}Ca_{0.3}Mn_{1-x}Ni_xO_3$.

Electrical and Magnetic Properties in [La0.7(Ca1-xSrx)0.3MnO3)]0.99/(BaTiO3)0.01 Composites

  • Kim, Geun-Woo;Bian, Jin-Long;Seo, Yong-Jun;Koo, Bon-Heun
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.216-219
    • /
    • 2011
  • Perovskite manganites such as $RE_{1-x}A_xMnO_3$ (RE = rare earth, A = Ca, Sr, Ba) have been the subject of intense research in the last few years, ever since the discovery that these systems demonstrate colossal magnetoresistance (CMR). The CMR is usually explained with the double-exchange (DE) mechanism, and CMR materials have potential applications for magnetic switching, recording devices, and more. However, the intrinsic CMR effect is usually found under the conditions of a magnetic field of several Teslas and a narrow temperature range near the Curie temperature ($T_c$). This magnetic field and temperature range make practical applications impossible. Recently, another type of MR, called the low-field magnetoresistance(LFMR), has also been a research focus. This MR is typically found in polycrystalline half-metallic ferromagnets, and is associated with the spin-dependent charge transport across grain boundaries. Composites with compositions $La_{0.7}(Ca_{1-x}Sr_x)_{0.3}MnO_3)]_{0.99}/(BaTiO_3)_{0.01}$ $[(LCSMO)_{0.99}/(BTO)_{0.01}]$were prepared with different Sr doping levels x by a standard ceramic technique, and their electrical transport and magnetoresistance (MR) properties were investigated. The structure and morphology of the composites were studied by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). BTO peaks could not be found in the XRD pattern because the amount of BTO in the composites was too small. As the content of x decreased, the crystal structure changed from orthorhombic to rhombohedral. This change can be explained by the fact that the crystal structure of pure LCMO is orthorhombic and the crystal structure of pure LSMO is rhombohedral. The SEM results indicate that LCSMO and BTO coexist in the composites and BTO mostly segregates at the grain boundaries of LCSMO, which are in accordance with the results of the magnetic measurements. The resistivity of all the composites was measured in the range of 90-400K at 0T, 0.5T magnetic field. The result indicates that the MR of the composites increases systematically as the Ca concentration increases, although the transition temperature $T_c$ shifts to a lower range.

Local structure and transport properties of $La_{0.7}Ca_{0.3-x}Ba_{x}MnO_3$ manganites

  • A.N.Ulyanov;Yang, Dong-Seok;Yu, Seong-Cho
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.62-63
    • /
    • 2003
  • Electron-phonon interaction plays a significant role in forming of colossal magnetoresistance effect (CMR). Polaron formation was observed by neutron diffraction and by extended X-ray absorption fine structure (EXAFS) analysis. Local probe as given by the EXAFS is a useful method to study the polaronic charge and its dependence on temperature and ions size. Here we present the EXAFS study of polaronic charge in $La_{0.7}Ca_{0.3-x}Ba_{x}MnO_3$ compositions.

  • PDF