【S-12】 초청강연 ## Magnetic and Transport Properties of Multilayered Pr_{0.65}Ca_{0.35}MnO₃/La_{0.7}Sr_{0.3}MnO₃ Films Controlled by the Microstructures V. G. Prokhorov, V. S, Flis, 박상윤,* 이영백* Institute of Metal Physics, NASU, Ukraine, *q-Psi & 한양대 물리학과 The magnetic and the transport properties of Pro65Cao35MnO3/Lao7Sro3MnO3 multilayered (ML) films prepared by laser ablation method have been investigated in a wide range of temperature and magnetic field. The substrates were LaAlO₃(100) single crystal and Al₂O₃ polycrystal. The oxygen pressure in the chamber was 200 Torr during deposition and 600 Torr during cooling. Under these conditions were deposited the ML films which contain six La_{0.7}Sr_{0.3}MnO₃ layers and five Pr_{0.65}Ca_{0.35}MnO₃ layers at different substrate temperature, T_{sub} = 560°C, 610°C, 660°C, and 710°C. Each layer has thickness of 20 nm. The La_{0.7}Sr_{0.3}MnO₃ film was deposited at the top and bottom. X-ray diffraction analysis reveals that all films deposited on LaAlO₃ substrate demonstrate the highly oriented texture and can be treated as epitaxial ones. On the contrary, the deposition on the Al₂O₃ substrate leads to a formation of polycrystalline ML films. It was shown that polycrystalline ML films demonstrate ferromagnetic coupling between layers at all T_{sub} and exhibit non-monotonic (with maximum and minimum) behavior of resistance versus temperature. Meanwhile, in the epitaxial ML films the ferromagnetic coupling is observed only at high Tsub (660°C). In these ML films a record value of negative magneto-resistance (60% at 5 T) was observed at room temperature, making it a potential candidate for electronic applications. The experimental results are discussed on the basis of modern theoretical approaches.