• Title/Summary/Keyword: ${GC}^2$

Search Result 3,294, Processing Time 0.027 seconds

Changes in Fatty Acid Composition of Grain after Milling (곡류 도정에 따른 지방산 조성 변화 연구)

  • Cho, Young-Sook;Kim, Yu-Na;Kim, Su-Yeonk;Kim, Jung-Bong;Kim, Heon-Woong;Kim, Se-Na;Kim, So-Young;Park, Hong-Ju;Kim, Jae-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.409-413
    • /
    • 2011
  • BACKGROUND: Cereals, especially rice is the staple food of oriental nations and because it is very important for Korean food, to determine the extent of nutrient losses due to milling, we analyzed the fatty acid using by GC-FID(Gas Chromatography-Flame Ionization Detector). Experimented rice cereals were rice, glutinous rice, Heuinchalssalbori, Seodunchalbori, Saessalbori, Keunalbori No.1, barnyard millet produced in Korea. METHODS AND RESULTS: After milling, the contents of fatty acids in the rice, glutinous rice, Heuinchalssalbori, and Seodunchalbori, Keunalbori No.1 rather decreased, but in the Saessalbori, and barnyard mille increased. Particularly, fatty acid content of the rice decreased from 24.8 mg/g to 6.4 mg/g, glutinous rice decreased from 29.4 mg/g to 11.7 mg/g after milling. There were also significant changes in the compositions of fatty acid among samples. Stearic acid ($C_{18:0}$) increased from 5% to 15%, but oleic acid ($C_{18:1}$) and linoleic acid ($C_{18:2}$) decreased in the rice after milling. CONCLUSION(s):In the brown rice, 11 different types of fatty acids were detected, and its highest content was found in grains. However, milled grain was observed only seven fatty acids in the case of rice. This result insisted that a portion of the lipid layer was significantly lost during the milling operation in rice.

Studies on the RNA nucleotide composition of egg, worm body, pupa and silk-gland(posterior) of Bombyx mori, and spinning gland of spider (가잠(家蠶)의 충체(蟲體), 용체, 잠란(蠶卵) 및 견사선(絹絲腺)(후부(後部))과 지주(蜘蛛) 방적선(紡績腺) RNA의 nucleotide 조성(組成)에 관(關)한 연구(硏究))

  • Kim, Hyeong-Su
    • Applied Biological Chemistry
    • /
    • v.5
    • /
    • pp.7-21
    • /
    • 1964
  • 가잠(家蠶)(Bombyx mori)의 잠체(蠶體), 용체 및 견사선(絹絲腺)(후부(後部))에서 phenol법(法)으로 RNA를 추출(抽出)하여 RNA의 nucleotide 조성(組成)(mole ratio)을 살피는 한편, 견사선(絹絲腺)(후부(後部))에서 초원심법(超遠沈法)으로 r-RNA, s-RNA를 분리(分離)하여 이에 대(對)한 nucleotide조성(組成)을 조사(調査)하고 또 가잠견사선(家蠶絹絲腺)과 비교(比較)할 목적(目的)으로 거미 방적선(紡績腺)의 t-RNA를 분리(分離)하여 nucleotide성분(成分)을 측정(測定)하여 다음과 같은 결과(結果)를 얻었다. 1) 잠란(蠶卵)에 있어서 이것을 마수(磨粹), 탈지(脫脂) 후(後) lysozyme을 작용(作用)시키고 10% NaCl용액(溶液)으로 가열(加熱) 추출(抽出)하는 새방법(方法)을 고찰(考察)하여 RNA의 추출(抽出)이 극난(極難)한 잠란(蠶卵)에서 RNA를 분리(分離)하는데 성공(成功)하였다. 2) 가잠란(家蠶卵), 잠체(蠶體), 용체 및 견사선(絹絲腺)(후부(後部))의 t-RNA nucleotide 조성(組成)은 다음과 같다. 시료(試料) $\frac{G+C}{A+U}$ $\frac{G+U}{A+C}$ $\frac{Pu}{Py}$ 가잠란(家蠶卵)의 RNA 1.14 1.24 0.99 가잠체(家蠶體)의 RNA 1.40 1.36 0.80 용체의 RNA 1.40 1.33 1.35 후부견사선(後部絹絲腺)의 RNA 1.05 1.32 1.15 이로서 잠체(蠶體). 용체 및 견사선(絹絲腺)의 Pu/Py는 각각(各各) 차이(差異)가 있으나 G+U/A+C는 3자간(者間)에 1.3의 거이 동일(同一)한 수치(數値)를 보여주고 있다. G+C/A+U는 잠체(蠶體)와 용체에 있어서 동일(同一)하나 견사선(絹絲腺)의 그것과는 차이(差異)가 있다. 한편 잠란(蠶卵)에 있어서는 Pu/Py, G+C/A+U, G+U/A+C가 각각(各各) 잠체(蠶體), 용체 및 견사선(絹絲腺)에 있어서와 현저(顯著)한 차이(差異)를 보여주고 있다. G+C/A+U가 1.3이나 되는 RNA의 base ratio를 가진 생물(生物)에 관(關)해서는 아직 보고(報告)된 바 없고 다만 본논문(本論文)의 가잠(家蠶)에 관(關)한 RNA와 속편(續編)인 각종(各種) 패류(貝類) RNA의 nucleotide 조성(組成)에서 모두 1.3에 가까운 수치(數値)를 보여주고 있다. 3) 견사선(絹絲腺)(후부(後部)) t-RNA와 거미 방적선(紡績腺)의 t-RNA의 nucleotide molar ratio 및 견사선(絹絲腺)의 r-RNA, s-RNA nucleotide 조성(組成)은 다음과 같다. 재료(材料) $\frac{G+C}{A+U}$ $\frac{G+U}{A+C}$ $\frac{Pu}{Py}$ 가잠견사선(家蠶絹絲腺)(후부(後部)의 t-RNA 1.05 1.32 1.15의 r-RNA 1.12 1.30 1.20의 s-RNA 1.55 1.33 0.65 지주방적선(蜘蛛紡績腺)의 t-RNA 1.35 1.24 1.16 즉(卽) 가잠견사선(家蠶絹絲腺)(후부(後部))과 거미방적선(紡績腺)의 t-RNA nucleotide 조성(組成)은 Pu/Py가 1.15와 1.16으로서 거이 동일(同一)하지만 G+C/A+U, G+U/A+C에 차이(差異)가 있음을 보았다. 한편 가잠견사선(家蠶絹絲腺)(후부(後部)) r-RNA와 s-RNA의 Pu/Py와 G+C/A+U는 현저(顯著)한 차이(差異)가 있고, G+U/A+C에 있어서는 1.3으로서 거이 동일(同一)한 수치(數値)를 보여주고 있다. 4. 이상(以上)과 같이 잠체(蠶體)에 관(關)한 RNA의 nucleotide 조성(組成)은 소위(所謂) GC-type로서, 현재(現在)까지 문헌(文獻)에 보고(報告)된 각종(各種) 생물(生物)의 RNA의 base ratio에 관(關)하여 비교(比較) 검토(檢討)하였으며, RNA의 nucleotide ratio의 차이(差異)의 의의(意義)에 대(對)하여 고찰(考察)하였다.

  • PDF

Comparative Study on the Composition of Floral Volatile Components in the Flowering Stages of Robinia pseudoacacia L. (아까시나무(Robinia pseudoacacia L.) 꽃의 개화 단계별 향기성분 조성 비교)

  • Jung, Je Won;Lee, Hyun Sook;Noh, Gwang Rae;Lee, Andosung;Kim, Moon Sup;Kim, Sea Hyun;Kwon, Hyung Wook
    • Journal of Apiculture
    • /
    • v.32 no.3
    • /
    • pp.139-146
    • /
    • 2017
  • Floral scent emitted from many plants is the critical factors for pollinator attraction and defense for adaptation in environments. The fragrance components of flowers are different in composition by geographical origins, climate factors and the development stages of flowers. In the present study, we investigated the volatile-floral compounds in flowers of Robinia pseudoacacia L. and defined the chemical contribution for flowering periods. The volatile compounds analysis was performed by gas chromatography with mass selective detector after solid phase microextraction (SPME). We reported different compositional features of fragrance compounds according to flowering periods. The abundant compounds identified in stage 1 were ${\alpha}$-pinene (66.80%) and ${\beta}$-pinene (26.53%). Those of the stage 2 were (Z)-${\beta}$-ocimene (37.57%), ${\alpha}$-pinene (15.16%), benzaldehyde (16.63%), linalool (12.13%). The volatiles of stage 3 comprised an abundance of (Z)-${\beta}$-ocimene (64.94%), ${\alpha}$-pinene (9.84%), linalool (8.92%), benzaldehyde (1.71%). Leaf volatiles were distinct from those in the reproductive plant parts by their high relative amount of (E)-${\beta}$-ocimene (23.50%) and (Z)-3-Hexenyl acetate (27.87%). Differences in flower scents of the different stages and leaves are discussed in light of biochemical constraints on volatile chemical synthesis and of the role of flower scent in evolutionary ecology of R. pseudoacacia.

The Variation of Natural Population of Pinus densiflora S. et Z. in Korea (III) -Genetic Variation of the Progeny Originated from Mt. Chu-wang, An-Myon Island and Mt. O-Dae Populations- (소나무 천연집단(天然集團)의 변이(變異)에 관(關)한 연구(硏究)(III) -주왕산(周王山), 안면도(安眠島), 오대산(五臺山) 소나무집단(集團)의 차대(次代)의 유전변이(遺傳變異)-)

  • Yim, Kyong Bin;Kwon, Ki Won
    • Journal of Korean Society of Forest Science
    • /
    • v.32 no.1
    • /
    • pp.36-63
    • /
    • 1976
  • The purpose of this study is to elucidate the genetic variation of the natural forest of Pinus densiflora. Three natural populations of the species, which are considered to be superior quality phenotypically, were selected. The locations and conditions of the populations are shown in table 1 and 2. The morphological traits of tree and needle and some other characteristics were presented already in our first report of this series in which population and family differences according to observed characteristics were statistically analyzed. Twenty trees were sampled from each populations, i.e., 60 trees in total. During the autumn of 1974, matured cones were collected from each tree and open-pollinated seeds were extracted in laboratory. Immediately after cone collection, in closed condition, the morphological characteristics were measured. Seed and seed-wing dimensions were also studied. In the spring of 1975, the seeds were sown in the experimental tree nursery located in Suweon. And in the April of 1976, the 1-0 seedlings were transplanted according to the predetermined experimental design, randomized block design with three replications. Because of cone setting condition. the number of family from which progenies were raised by populations were not equal. The numbers of family were 20 in population 1. 18 in population 2 and 15 in population 3. Then, each randomized block contained seedlings of 53 families from 3 populations. The present paper is mainly concerned with the variation of some characteristics of cone, seed, needle, growth performance of seedlings, and chlorophyll and monoterpene compositions of needles. The results obtained are summerized as follows. 1. The meteorological data obtained by averaging the records of 30 year period, observed from the nearest station to each location of populations, are shown in Fig. 3, 4, and 5. The distributional pattern of monthly precipitation are quite similar among locations. However, the precipitation density on population 2, Seosan area, during growing season is lower as compared to the other two populations. Population 1. Cheong-song area, and population 3, Pyong-chang area, are located in inland, but population 2 in the western seacoast. The differences on the average monthly air temperatures and the average monthly lowest temperatures among populations can hardly be found. 2. Available information on the each mother trees (families) studied, such as age, stem height, diameter at breast height, clear-bole-length, crown conditions and others are shown in table 6,7, and 8. 3. The measurements of fresh cone weight, length and the widest diameter of cone are given in Tab]e 9. All these traits arc concerned with the highly significant population differences and family differences within population. And the population difference was also found in the cone-index, that is, length-diameter ratio. 4. Seed-wing length and seed-wing width showed the population differences, and the family differences were also found in both characteristics. Not discussed in this paper, however, seed-wing colours and their shapes indicate the specificity which is inherent to individual trees as shown in photo 3 on page 50. The colour and shape are fully the expression of genetic make up of mother tree. The little variations on these traits are resulted from this reason. The significant differences among populations and among families were found in those characteristics, such as 1000-seed weight, seed length, seed width, and seed thickness as shown in table 11. As to all these dimensions, the values arc always larger in population 1 which is younger in age than that of the other two. The population differences evaluated by cone, seed and seed-wing sizes could partly be attributed to the growth vigorousity. 5. The values of correlation between the characteristics of cone and seed are presented in table 12. As shown, the positive correlations between cone diameter and seed-wing width were calculated in all populations studied. The correlation between seed-wing length and seed length was significantly positive in population 1 and 3 but not in population 2, that is, the r-value is so small as 0.002. in the latter. The correlation between cone length and seed-wing length was highly significant in population 1, but not in population 2. 6. Differences among progenies in growth performances, such as 1-0 and 1-1 seedling height and root collar diameter were highly singificant among populations as well as families within population(Table 13.) 7. The heritability values in narrow sense of population characteristics were estimated on the basis of variance components. The values based on seedling height at each age stage of 1-1 and 1-0 ranged from 0.146 to 0.288 and the values of root collar diameter from 0.060 to 0.130. (Table 14). These heritability values varied according to characteristics and seedling ages. Here what must be stated is that, for calculation of heritability values, the variance values of population was divided by the variance value of environment (error) and family and population. The present authors want to add the heritability values based on family level in the coming report. It might be considered that if the tree age is increased in furture, the heritability value is supposed to be altered or lowered. Examining the heritability values studied previously by many authors, in pine group at age of 7 to 15, the values of height growth ranged from 0.2 to 0.4 in general. The values we obtained are further below than these. 8. The correlation between seedling growth and seed characteristics were examined and the values resulted are shown in table 16. Contrary to our hypothetical premise of positive correlation between 1-0 seedling height and seed weight, non-significance on it was found. However, 1-0 seedling height correlated positively with seed length. And significant correlations between 1-0 and 1-1 seedling height are calculated. 9. The numbers of stomata row calculated separately by abaxial and adaxial side showed highly significant differences among populations, but not in serration density. On serration density, the differences among families within population were highly significant. (Table 17) A fact must be noted is that the correlation between stomata row on abaxial side and adaxial side was highly significant in all populations. Non-significances of correlation coefficient between progenies and parents regarding to stomata row on abaxial side were shown in all populations studied.(Table 18). 10. The contents of chhlorophyll b of the needle were a little more than that of chlorophyll a irrespective of the populations examined. The differences of chlorophyll a, b and a plus b contents were highly significant but not among families within populations as shown in table 20. The contents of chlorophyll a and b are presented by individual trees of each populations in table 21. 11. The occurrence of monoterpene components was examined by gas liquid chromatography (Shimazu, GC-1C type) to evaluate the population difference. There are some papers reporting the chemical geography of pines basing upon monoterpene composition. The number of populations studied here is not enough to state this problem. The kinds of monoterpene observed in needle were ${\alpha}$-pinene, camphene, ${\beta}$-pinene, myrcene, limonene, ${\beta}$-phellandrene and terpinolene plus two unknowns. In analysis of monoterpene composition, the number of sample trees varied with population, I.e., 18 families for population 1, 15 for population 2 and 11 for population3. (Table 22, 23 and 24). The histograms(Fig. 6) of 7 components of monoterpene by population show noticeably higher percentages of ${\alpha}$-pinene irrespective of population and ${\beta}$-phellandrene in the next order. The minor Pinus densiflora monoterpene composition of camphene, myrcene, limonene and terpinolene made up less than 10 percent of the portion in general. The average coefficients of variation of ${\alpha}$-pinene and ${\beta}$-phellandrene were 11 percent. On the contrary to this, the average coefficients of variation of camphene, limonene and terpinolene varied from 20 to 30 percent. And the significant differences between populaiton were observed only in myrcene and ${\beta}$-phellandrene. (Table 25).

  • PDF