• Title/Summary/Keyword: ${Al_2}{O_3}$-C

Search Result 2,883, Processing Time 0.032 seconds

Study of Hydrolysis of Al Powder and Compaction of Nano Alumina by Spark Plasma Sintering(SPS) (Al 분말의 수화 반응과 스파크 플라즈마 열처리법으로 제조된 알루미나 성형체 연구)

  • Uhm Y. R.;Lee M. K.;Rhee C. K.
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.422-427
    • /
    • 2005
  • The $Al_2O_3$ with various phases were prepared by simple ex-situ hydrolysis and spark plasma sintering (SPS) process of Al powder. The nano bayerite $(\beta-Al(OH)_3)$ phase was derived by hydrolysis of commercial powder of Al with micrometer size, whereas the bohemite (AlO(OH)) phase was obtained by hydrolysis of nano Al powder synthesized by pulsed wire evaporation (PWE) method. Compaction as well as dehydration of both nano bayerite and bohemite was carried out simultaneously by SPS method, which is used to fabricate dense powder compacts with a rapid heating rate of $100^{\circ}C$ per min. under the pressure of 50MPa. After compaction treatment in the temperature ranges from $100^{\circ}C\;to\; 1100^{\circ}C$, the bayerite and bohemite phases change into various alumina phases depending on the compaction temperatures. The bayerite shows phase transition of $Al(OH)_3{\to}{\eta}-Al_2O_3{\to}{\theta}-Al_2O_3{\to}\alpha-Al_2O_3$ sequences. On the other hand, the bohemite experiences the phase transition from AlO(OH) to ${\gamma}-Al_2O_3\;at\;350^{\circ}C.$ It shows AlO(OH) ${\gamma}-Al_2O_3{\to}{\delta}-Al_2O_3{\to}{\alpha}-Al_2O_3$ sequences. The ${\gamma}-Al_2O_3$ compacted at $550^{\circ}C$ shows a high surface area $(138m^2/g)$.

In-Situ Fabrication of TCP/Al2O3 and Fluorapatite/Al2O3 Composites by Normal Sintering of Hydroxyapatite and Al2O3 Powder Mixtures (Hydroxyapatite와 Al2O3 혼합분말의 상압소결에 의한 TCP/Al2O3 및 Fluorapatite/Al2O3 복합재료의 In-Situ 제조)

  • Ha, Jung-Soo;Han, Yoo-Jeong
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.129-135
    • /
    • 2019
  • A powder mixture of 70 wt% $Al_2O_3$ and 30 wt% hydroxyapatite (HA) is sintered at $1300^{\circ}C$ or $1350^{\circ}C$ for 2 h at normal pressure. An $MgF_2$-added composition to make HA into fluorapatite (FA) is also prepared for comparison. The samples without $MgF_2$ show ${\alpha}$ & ${\beta}$-tricalcium phosphates (TCPs) and $Al_2O_3$ phases with no HA at either of the sintering temperatures. In the case of $1,350^{\circ}C$, a $CaAl_4O_7$ phase is also found. Densification values are 69 and 78 %, and strengths are 156 and 104 MPa for 1,300 and $1,350^{\circ}C$, respectively. Because the decomposition of HA produces a $H_2O$ vapor, fewer large pores of $5-6{\mu}m$ form at $1,300^{\circ}C$. The $MgF_2$-added samples show FA and $Al_2O_3$ phases with no TCP. Densification values are 79 and 87 %, and strengths are 104 and 143 MPa for 1,300 and $1,350^{\circ}C$, respectively. No large pores are observed, and the grain size of FA ($1-2{\mu}m$) is bigger than that of TCP ($0.7{\mu}m{\geq}$) in the samples without $MgF_2$. The resulting $TCP/Al_2O_3$ and $FA/Al_2O_3$ composites fabricated in situ exhibit strengths 6-10 times higher than monolithic TCP and HA.

Synthesis and properties of $Al_2O_3-SiC$ Composites from Alkoxides III. Effect of Composite Powder Type on the Sintering Characteristics and Properties of $Al_2O_3-SiC$ Comopsites (알콕사이드로부터 $Al_2O_3-SiC$ 복합재료의 제조 및 특성 III. 복합분말의 형태에 따른 $Al_2O_3-SiC$ 복합재료의 소결 특성 및 물성)

  • 이홍림;김규영
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.4
    • /
    • pp.316-324
    • /
    • 1993
  • Three types of dispersed, coated and mechanically mixed SiC reinforced Al2O3 composite powders were used to investigate the effect of composite powder type on sintering characteristics and properties of Al2O3-SiC composites. Sinterability of coated type composite powders was superior to that of other composite powders when they were pressureless sintered at 1500~1$700^{\circ}C$ for 2h in Ar atmosphere. However, sinterabilities (>98% TD) of each type of composite powders were similar when they were hot pressed at 180$0^{\circ}C$ for 1h under 30MPa in N2 atmosphere. SiC powders were randomly distributed in the specimen prepared from dispersed type composite powders, whereas homogeneously distributed for coated type specimens. It was found that SiC powders inhibited the grain growth of Al2O3, and fracture toughness was increased by the increment of crack growth resistance due to residual stress by secondary SiC particles within Al2O3 grains.

  • PDF

Passivation property of Al2O3 thin film for the application of n-type crystalline Si solar cells (N-type 결정질 실리콘 태양전지 응용을 위한 Al2O3 박막의 패시베이션 특성 연구)

  • Jeong, Myung-Il;Choi, Chel-Jong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.3
    • /
    • pp.106-110
    • /
    • 2014
  • The passivation property of $Al_2O_3$ thin film formed using atomic layer deposition (ALD) for the application of crystalline Si solar cells was investigated using microwave photoconductance decay (${\mu}$-PCD). After post-annealing at $400^{\circ}C$ for 5 min, $Al_2O_3$ thin film exhibited the structural stability having amorphous nature without the interfacial reaction between $Al_2O_3$ and Si. The post-annealing at $400^{\circ}C$ for 5 min led to an increase in the relative effective lifetime of $Al_2O_3$ thin film. This could be associated with the field effective passivation combined with surface passivation of textured Si. The capacitance-voltage (C-V) characteristics of the metal-oxide-semiconductor (MOS) with $Al_2O_3$ thin film post-annealed at $400^{\circ}C$ for 5 min was carried out to evaluate the negative fixed charge of $Al_2O_3$ thin film. From the relationship between flatband voltage ($V_{FB}$) and equivalent oxide thickness (EOT), which were extracted from C-V characteristics, the negative fixed charge of $Al_2O_3$ thin film was calculated to be $2.5{\times}10^{12}cm^{-2}$, of which value was applicable to the passivation layer of n-type crystalline Si solar cells.

Synthesis and Hydration Property of 3CaO.${3Al_2}{O_3}$.$CaSO_4$ Clinker by Solid State Reaction (고상반응에 의한 3CaO.${3Al_2}{O_3}$.$CaSO_4$ 클링커의 제조 및 수화)

  • 전준영;김형철;조진상;송종택
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.459-465
    • /
    • 2000
  • 3CaO.3Al2O3.CaSO4(C4A3)clinker was prepared by solid state reaction and then its hydration property was investigated. C4A3 clinker was fired at various temperatures in the range of 700~135$0^{\circ}C$. The hydration of it was studied by XRD, DSC, Solid-state 27Al MAS NMR and SEM. According to the results, the Ca4A3 clinker was produced by reacting calcium aluminates with CaSO4 and Al2O3 and C4A3 was formed as a main phase after calcining at 120$0^{\circ}C$. The hydration products were mainly calcium monosulfoaluminate hydrate and Al(OH)3, and they were produced after 2hrs of hydration. However the hydration rate was about 74% at 3days.

  • PDF

Decomposition Characteristics of CF4 by SiC/Al2O3 Modified with Cerium Sulfate Using Microwave System (마이크로파를 이용한 황산세륨으로 개질화 된 SiC/Al2O3 촉매의 CF4 분해 특성)

  • Choi, Sung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.12
    • /
    • pp.668-673
    • /
    • 2015
  • Alumina-based catalysts with different Ce loadings were studied in the decomposition of $CF_4$ using microwave heating system. Heating material of microwave system used Silicon Carbide. The crystallographic phases of catalysts were investigated by XRD and decomposition rates of $CF_4$ were examined by GC-TCD. The catalysts of 10 wt% Ce modified $Al_2O_3$ showed higher $CF_4$ decomposition rate than un-modified $Al_2O_3$ for $500^{\circ}C$ reaction temperature. The k value of catalysts shows the order of $Ce(20)/Al_2O_3=Ce(0)/Al_2O_3<Ce(5)/Al_2O_3<Ce(10)/Al_2O_3$. XRD patterns of $Ce(0)/Al_2O_3$ were no difference before and after the reaction and showed $Al_2O_3$ phases. With the increase in Ce loadings, $CeO_2$, $AlF_3$ of XRD peaks was observed. The results was indicated that Ce modifed $Al_2O_3$ than un-modifed $Al_2O_3$ was decreased reaction temperature to $200^{\circ}C$ with same decomposition rate. Also the appropriated cerium sulfate loadings on $Al_2O_3$ were 5~10 wt%.

Mechanical Properties and Solid Lubricant Wear Behavior of MMCs Reinforced with a Hybrid of $Al_{2}O_{3}$ and Carbon Short Fibers (알루미나와 탄소단섬유를 혼합한 금속복합재료의 기계적 성질과 고체윤활 마모거동)

  • 송정일;봉하동;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.968-980
    • /
    • 1995
  • Al/Al$_{2}$O$_{3}$/C hybrid metal matrix composites are fabricated by the direct squeeze infiltration method. From the microstructure of Al/Al$_{2}$O$_{3}$/C composites, uniform distribution of reinforcements and good bondings are found. Optimum processing conditions for preforms and squeeze castings are suggested. Mechanical properties, such as elastic modulus, elongation, 0.2% offset yield strength and ultimate tensile strength are obtained. Through the abrasive were test and wear surface analsis, wear behavior and its mechanism of AC2B aluminum and Al/Al$_{2}$O$_{3}$/C composites can be characterized under various sliding speed conditions. Tensile strenght elongation of Al/Al$_{2}$O$_{3}$/C composites are decreased with increasing the addition of carbon fiber. On the contrary, elastic modulus of Al/Al$_{2}$O$_{3}$/C composites is slightly improved compared with that of the unreinforced matrix alloy. The addition of carbon fiber to al/al$_{2}$O$_{3}$/C composites gives rise to improvement of the wear resistance. Specially, carbon chopped fibers play an important role in interfering sticking between the counter material and metal matirix composites. Al/Al$_{2}$O$_{3}$/C composites are suitable to high speed due to solid lubication of carbon. And wear model of Al/Al$_{2}$O$_{3}$/C composites is suggested by the examination of worn surfaces.

Phase Relationships of Al2O3-Cr2O3-ZrO2-HfO2 System (Al2O3-Cr2O3-ZrO2-HfO2계의 상 (phase)관계에 관한 연구)

  • 장동석;조병곤;오근호;이종근
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.1
    • /
    • pp.33-40
    • /
    • 1987
  • The investigation includes phase equilibria of Al2O3-HfO2 Cr2O3-ZrO2, Cr2O3-HfO2, Al2O3-Cr2O3-ZrO2, Al2O3-Cr2O3-HfO2, Al2O3-ZrO2-HfO2, Cr2O3-ZrO2-HfO2, Al2O3-Cr2O3-ZrO2-HfO2. In the systems the solubility near the end members has been studied at 1500$^{\circ}C$ and 1600$^{\circ}C$, respectively. Selective Compositions were investigated in the area of the guarternary system where the phae relation was examined.

  • PDF

Comparative studies of the mechanochemically treatment of $La_{2}O_{3}-Al(OH)_{3}$ (메카노케미컬 공정에 의한 $La_{2}O_{3}-Al_{2}O_{3}$$La_{2}O_{3}-Al(OH)_{3}$의 비교연구)

  • 조정호;최상수;김강언;정수태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.701-704
    • /
    • 2001
  • The dielectric and sintering properties of LaAlO$_3$ceramics synthesised with La$_2$O$_3$-Al$_2$O$_3$(LAO) and La$_2$O$_3$-Al(OH)$_3$(LAH) were investigated. In case of LAH samples, a single phase of LaAlO$_3$powders was formed at 100$0^{\circ}C$, density of the ceramics sintered at 140$0^{\circ}C$ was 6.41g/㎤, and the dielectric constant and loss were 22.4 and 0.003, respectively. In case of LAO samples, a single phase of LaAlO$_3$powders was formed at 130$0^{\circ}C$, density of the ceramics sintered at 150$0^{\circ}C$ was 6.35g/㎤, and the dielectric constant and loss were 22.16 and 0.009, respectively.

  • PDF

The Effect of $MgO-Y_2O_3$ on $Al_2O_3-TiC$ Composites

  • Kasuriya, S.;Atong, D.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.543-544
    • /
    • 2006
  • The effect of the additives, $Y_2O_3$ and MgO, on the sintering and properties of $Al_2O_3-TiC$ composites was investigated. It is known that MgO is used as additive for improving densification and $Y_2O_3$ is applied as sintering aid. In this study, the amounts of TiC were varied in the range of 30-47 wt%. The 0.5 wt% MgO and also varied amounts of $Y_2O_3$ from 0.3 to 1 wt% were added into the composites. The sintering of $Al_2O_3-TiC$ composites was performed in a graphite-heating element furnace at different sintering temperature, 1700 and $1900\;^{\circ}C$, for 2 hr under an argon atmosphere. The results demonstrated that the properties of the composites sintered at $1700\;^{\circ}C$ were much better than those sintered at $1900\;^{\circ}C$. The comparisons on physical properties, mechanical properties and microstructure of composites with and without additives were reported. Comparing with other samples, $Al_2O_3-30wt%TiC$ composites with 0.5wt% MgO and $1\;wt%Y_2O_3$ exhibited the highest density of approximately 98% of theoretical and flexural strength of 302 MPa.

  • PDF