• Title/Summary/Keyword: ${137}Cs$

Search Result 532, Processing Time 0.026 seconds

Comparative Measurement of Radioactivity with Standard Gamma-ray Ionization Chamber System (표준 감마선 전리함 장치에 의한 방사능 비교 측정)

  • Park, Tae-Soon;Woo, Dong-Ho;Oh, Pil-Jae;Hwang, Sun-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.1
    • /
    • pp.11-18
    • /
    • 1984
  • A Standard gamma-ray ionization chamber system was developed with a well type ionization chamber and micro current measuring circuit. Micro current was measured by the automatic Townsend balance with stepwise compensation method. For gamma emitting nuclides such as $^{241}Am,\;^{133}Ba,\;^{60}Co,\;^{134}Cs,\;^{137}Cs,\;and\;^{22}Na$ relative calibration factors to $^{226}Ra$ reference source were calculated and detection .efficiency curve was determined as a fudnction of gamma energy.

  • PDF

Scintillation Characteristics of CsI:X(X=Li+,K+,Rb+ Single Crystals (CsI:X(X=Li+,K+,Rb+단결정의 섬광특성)

  • Gang, Gap-Jung;Doh, Sih-Hong;Lee, Woo-Gyo;Oh, Moon-Young
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • CsI single crystals doped with lithium, potassium or rubidium were grown by using Czochralski method at Ar gas atmosphere. The energy resolutions of CsI(Li:0.2 mole%), CsI(K:0.5 mole%) and CsI(Rb:1.5 mole%) scintillators were 14.5%, 15.9% and 17.0% for $^{137}Cs$(0.662 MeV), respectively. The energy calibration curves of CsI(Li), CsI(K) and CsI(Rb) scintillators were linear for $\gamma$-ray energy. The time resolutions of CsI(Li:0.2 mole%), CsI(K:0.5 mole%) and CsI(Rb:1.5 mole%) scintillators measured by CFT(constant-fraction timing method) were 9.0 ns, 14.7 ns and 9.7 ns, respectively. The fluorescence decay times of CsI(Li:0.2 mole%) scintillator had a fast component and slow one of ${\tau}_1=41.2\;ns$ and ${\tau}_2=483\;ns$, respectively. The fluorescence decay times of CsI(K:0.5 mole%) scintillator were ${\tau}_1=47.2\;ns$ and ${\tau}_2=417\;ns$. And the fluorescence decay times of CsI(Rb:1.5 mole%) scintillator were ${\tau}_1=41.3\;ns$ and ${\tau}_2=553\;ns$. The phosphorescence decay times of CsI(Li:0.2 mole%), CsI(K:0.5 mole%) and CsI(Rb:1.5 mole%) scintillators were 0.51 s, 0.57 s and 0.56 s, respectively.

Comparative Evaluation of Various Standard Methods in Leaching Test of Radioactive Waste Form (방사성고화체로 부터의 Co, Cs침출에 대한 표준시험법의 상호비교)

  • Kim, Gi-Hong;Yoo, Yeong-Geol;Jeong, Gyeong-Gi;Hong, Gwon-Pyo;Lee, Rak-Hui;Jeong, Ui-Yeong;Koh, Deok-Jun;Kim, Heon
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.21-31
    • /
    • 2003
  • IAEA, FT-04-020, and ANS 16.1, standard leaching test methods, were evaluated comparatively with their test results. Leaching index of Co-60 and Cs-137 for all waste forms were above 6.0. Their leaching behavior were contrary according to the type of matrix and leachant. Leachability of Co in cement waste form was higher in simulated seawater than demi. water, and higher in demi. water in paraffin waste form. Leachability of Cs was contrary to Cs. Cumulative fraction leached of Co was higher such as IAEA>ANS>FT in cement waste form.

  • PDF

Interdisciplinary Knowledge for Teaching: A Model for Epistemic Support in Elementary Classrooms

  • Lilly, Sarah;Chiu, Jennifer L.;McElhaney, Kevin W.
    • Research in Mathematical Education
    • /
    • v.24 no.3
    • /
    • pp.137-173
    • /
    • 2021
  • Research and national standards, such as the Next Generation Science Standards (NGSS) in the United States, promote the development and implementation of K-12 interdisciplinary curricula integrating the disciplines of science, technology, engineering, mathematics, and computer science (STEM+CS). However, little research has explored how teachers provide epistemic support in interdisciplinary contexts or the factors that inform teachers' epistemic support in STEM+CS activities. The goal of this paper is to articulate how interdisciplinary instruction complicates epistemic knowledge and resources needed for teachers' instructional decision-making. Toward these ends, this paper builds upon existing models of teachers' instructional decision-making in individual STEM+CS disciplines to highlight specific challenges and opportunities of interdisciplinary approaches on classroom epistemic supports. First, we offer considerations as to how teachers can provide epistemic support for students to engage in disciplinary practices across mathematics, science, engineering, and computer science. We then support these considerations using examples from our studies in elementary classrooms using integrated STEM+CS curriculum materials. We focus on an elementary school context, as elementary teachers necessarily integrate disciplines as part of their teaching practice when enacting NGSS-aligned curricula. Further, we argue that as STEM+CS interdisciplinary curricula in the form of NGSS-aligned, project-based units become more prevalent in elementary settings, careful attention and support needs to be given to help teachers not only engage their students in disciplinary practices across STEM+CS disciplines, but also to understand why and how these disciplinary practices should be used. Implications include recommendations for the design of professional learning experiences and curriculum materials.

Status of a national monitoring program for environmental radioactivity and investigation of artificial radionuclide concentrations (134Cs, 137Cs, 131I) in rivers and lakes (방사성물질 측정망 현황 및 하천·호소 내 인공방사성물질 (134Cs, 137Cs, 131I) 조사)

  • Kim, Jiyu;Jung, Hyun-ji;An, Mijeong;Hong, Jung-Ki;Kang, Taegu;Kang, Tae-Woo;Cho, Yoon-Hae;Han, Yeong-Un;Seol, Bitna;Kim, Wansuk;Kim, Kyunghyun
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.377-384
    • /
    • 2015
  • A survey of the artificial radionuclides in rivers and lakes was conducted to investigate their levels in surface water. Water samples were collected at 60 points and analyzed by gamma-ray spectrometry with a measurement time of 10,000 seconds for 134Cs, 137Cs, and 131I. The obained values were lower than MDA for all points, except one point for 131I that was 0.533±0.058 Bq/L. 131I is known as a radioactive material that occurs frequently in sewage treatment plants. Because it is often used for medical treatments and subject to spreading into the environment due to the excretion from the patients. For the point where 131I was detected, we conducted additional investigation on the upstream river point and the effluent points of nearby sewage treatment plant to find the source of 131I. 131I was not detected at the upstream points of one of the upstream sewage treatment plants but found at the downstream points with the level being 0.257±0.034 to 0.799±0.051 Bq/L, proving the sewage treatment plant was the 131Isource.