• 제목/요약/키워드: ${\varphi}$-morphism of Finsler $C^*$-modules

검색결과 1건 처리시간 0.017초

ORTHOGONALITY IN FINSLER C*-MODULES

  • Amyari, Maryam;Hassanniah, Reyhaneh
    • 대한수학회논문집
    • /
    • 제33권2호
    • /
    • pp.561-569
    • /
    • 2018
  • In this paper, we introduce some notions of orthogonality in the setting of Finsler $C^*$-modules and investigate their relations with the Birkhoff-James orthogonality. Suppose that ($E,{\rho}$) and ($F,{\rho}^{\prime}$) are Finsler modules over $C^*$-algebras $\mathcal{A}$ and $\mathcal{B}$, respectively, and ${\varphi}:{\mathcal{A}}{\rightarrow}{\mathcal{B}}$ is a *-homomorphism. A map ${\Psi}:E{\rightarrow}F$ is said to be a ${\varphi}$-morphism of Finsler modules if ${\rho}^{\prime}({\Psi}(x))={\varphi}({\rho}(x))$ and ${\Psi}(ax)={\varphi}(a){\Psi}(x)$ for all $a{\in}{\mathcal{A}}$ and all $x{\in}E$. We show that each ${\varphi}$-morphism of Finsler $C^*$-modules preserves the Birkhoff-James orthogonality and conversely, each surjective linear map between Finsler $C^*$-modules preserving the Birkhoff-James orthogonality is a ${\varphi}$-morphism under certain conditions. In fact, we state a version of Wigner's theorem in the framework of Finsler $C^*$-modules.