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ORTHOGONALITY IN FINSLER C∗-MODULES

Maryam Amyari and Reyhaneh Hassanniah

Abstract. In this paper, we introduce some notions of orthogonality

in the setting of Finsler C∗-modules and investigate their relations with

the Birkhoff-James orthogonality. Suppose that (E, ρ) and (F, ρ′) are
Finsler modules over C∗-algebras A and B, respectively, and ϕ : A → B
is a ∗-homomorphism. A map Ψ : E → F is said to be a ϕ-morphism
of Finsler modules if ρ′(Ψ(x)) = ϕ(ρ(x)) and Ψ(ax) = ϕ(a)Ψ(x) for

all a ∈ A and all x ∈ E. We show that each ϕ- morphism of Finsler

C∗-modules preserves the Birkhoff-James orthogonality and conversely,
each surjective linear map between Finsler C∗-modules preserving the

Birkhoff-James orthogonality is a ϕ-morphism under certain conditions.

In fact, we state a version of Wigner’s theorem in the framework of Finsler
C∗-modules.

1. Introduction and preliminaries

The notion of orthogonality is originally associated with inner product
spaces. In an inner product space, an element x is orthogonal to y if 〈x, y〉 = 0.
Recently, various extensions of this notion have been introduced in the setting
of normed spaces. Among them, the Birkhoff-James orthogonality is studied
extensively in [3–5]. This notion states that an element x of a normed linear
space X is orthogonal to y ∈ X, in short; x ⊥B y, if for each λ ∈ C

‖x‖ ≤ ‖x+ λy‖.
The characterizations of the Birkhoff-James orthogonality in C∗-algebras and
Hilbert C∗-modules are presented in several papers such as [3, 7, 8].

The notion of Finsler module over a C∗-algebra was introduced by Phillips
and Weaver [11]. In fact, Finsler modules over C∗-algebras are generalization
of Hilbert C∗-modules [10]. Recently, this theory has been developed by several
researchers [1, 2, 9].

Let us recall the definition of a Finlser module. Let A be a C∗-algebra and
A+ be the set of all positive elements of A. An element a ∈ A is positive,
in short a ≥ 0, if a is self-adjoint and the spectrum of a sp(a) is a subset of
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[0,+∞). Let E be a left module over A and let the map ρ : E −→ A+ satisfy
the following conditions:

(i) the map ‖x‖ : x 7→ ‖ρ(x)‖ 1
2 makes E into a Banach space;

(ii) ρ(ax) = aρ(x)a∗ for all a ∈ A and x ∈ E.
Then (E, ρ) is called a left Finsler module over A. A right Finsler module

can be defined similarly.
A left Finsler module E overA is said to be full if the linear span {ρ(x) : x ∈ E},
denoted by F(E), is dense in A.

As an example, if E is a left Hilbert C∗-module over A, then E together
with ρ(x) = 〈x, x〉 is a left Finsler module over A, since

ρ(ax) = 〈ax, ax〉 = a〈x, x〉a∗ = aρ(x)a∗.

In this paper, we introduce some notions of orthogonality in the setting
of Finsler modules over C∗-algebras and investigate their relations with the
Birkhoff-James orthogonality. We also show that each ϕ-morphism of Finsler
C∗-modules preserves the Birkhoff-James orthogonality and conversely, each
surjective linear map between Finsler C∗-modules which preserves the Birkhoff-
James orthogonality is a ϕ-morphism under certain conditions. We indeed state
a version of Wigner’s theorem in the framework of Finsler C∗-modules.

2. The Birkhoff-James orthogonality in Finsler C∗-modules

Analogue to the notion of Birkhoff-James orthogonality in the setting Hilbert
C∗-modules and the usual Birkhoff-James orthogonality in normed spaces, we
present the following notions in Finsler C∗-module content.

Definition 2.1. Let (E, ρ) be a Finsler module over a unital C∗-algebra A,
with unit I and x, y ∈ E. We say that x is strongly Birkhoff-James orthogonal
to y with respect to ρ, in short; x ⊥sBρ y, if for each a ∈ A

ρ(x) ≤ ‖ρ(x+ ay)‖I.

In the definition above, if the role of the elements of the underlying C∗-
algebra is played by the scalars, we say that x is Birkhoff-James orthogonal to
y with respect to ρ, in short; x ⊥Bρ y, where for each λ ∈ C

ρ(x) ≤ ‖ρ(x+ λy)‖I.

We also say that x is strongly Birkhoff-James orthogonal to y, in short;
x ⊥sB y, if for each a ∈ A

‖x‖ ≤ ‖x+ ay‖.

Remark 2.2. It is clear that x ⊥Bρ y if and only if x ⊥B y, as well as x ⊥sBρ y
if and only if x ⊥sB y. These assertions are deduced from the fact that if a ∈ A
and a ≥ 0, then a ≤MI if and only if ‖a‖ ≤M for some M ≥ 0.

It is obvious that x ⊥sBρ y ensures x ⊥Bρ y.
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Definition 2.3. Let (E, ρ) be a Finsler module over a C∗-algebra and x, y ∈ E.
We say that x is ρ-orthogonal to y, in short; x ⊥ρ y, if

ρ(x) ≤ ρ(x+ λy) for each λ ∈ C.

Evidently, x ⊥ρ y ensures x ⊥B y. The converse of this fact dose not hold
in general, as shown in the following example.

Example 2.4. Suppose that A = M2(C) as a Finsler module over itself with
ρ(A) = AA∗. Let A = [ 1 0

0 i ] and B = [ 1 0
0 0 ]. Then for each λ ∈ C

‖A+ λB‖ =

∥∥∥∥[ 1 + λ 0
0 i

]∥∥∥∥ = max{|1 + λ|, |i|} ≥ 1 = ‖A‖,

whence A ⊥B B. We, however, have A 6⊥ρ B, since

ρ(A) = I and ρ(A+ λB) =

[
1 + λ 0

0 i

] [
1 + λ 0

0 −i

]
=

[
|1 + λ|2 0

0 1

]
.

If λ = −1, then

ρ(A+ λB)− ρ(A) =

[
0 0
0 1

]
−
[

1 0
0 1

]
=

[
−1 0
0 0

]
� 0,

because sp
([−1 0

0 0

])
= {−1, 0} * R+.

Proposition 2.5. Let (E, ρ) be a Finsler module over a C∗-algebra A and
x, y ∈ E.

(i) If x ⊥ρ y, then ax ⊥ρ ay for each a ∈ A.
(ii) If ux ⊥ρ uy for each unitary element u ∈ A, then x ⊥ρ y.

Proof. (i) If x ⊥ρ y, then ρ(x) ≤ ρ(x+ λy) for each λ ∈ C. Thus

ρ(ax) = aρ(x)a∗ ≤ aρ(x+ λy)a∗ = ρ(ax+ λay).

Hence ax ⊥ρ ay.
(ii) Let ux ⊥ρ uy for each unitary element u ∈ A. Then ρ(ux) 6 ρ(ux+λuy)

for each λ ∈ C. Thus

ρ(x) = u∗uρ(x)u∗u 6 u∗uρ(x+ λy)u∗u = ρ(x+ λy).

It ensures that x ⊥ρ y. �

Note that by the above proposition, we may deduce ux ⊥ρ uy for some and
hence for each unitary element u ∈ A if and only if x ⊥ρ y.

The following definition is a generalization of Definition 2.3.

Definition 2.6. Let (E, ρ) be a Finsler module over a C∗-algebra A and x, y ∈
E. We say that x is strongly ρ-orthogonal to y, in short x ⊥sρ y, if for all a ∈ A,

ρ(x) ≤ ρ(x+ ay).

If A is unital, then x ⊥sρ y implies x ⊥ρ y. In fact, if x ⊥sρ y, then ρ(x) ≤
ρ(x+ (1.λ)y) = ρ(x+ λy) for each λ ∈ C. Hence x ⊥ρ y.
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Lemma 2.7. Let (E, ρ) be a Finsler module over a unital C∗-algebra A and
x, y ∈ E.

(i) x ⊥sρ y if and only if bx ⊥sρ by for each b ∈ Z (A).
(ii) If x ⊥sρ y, then x ⊥sB y.

Proof. (i) Let x ⊥sρ y. Then ρ(x) ≤ ρ(x + ay) for each a ∈ A. In addition,
ρ(bx) = bρ(x)b∗ ≤ bρ(x+ay)b∗ = ρ(bx+bay) = ρ(bx+aby) for each b ∈ Z (A),
whence bx ⊥sρ by.

Conversely, let bx ⊥sρ by for each b ∈ Z (A). Taking b = 1 we deduce that
x ⊥sρ y.

(ii) Let x ⊥sρ y. Then ρ(x) ≤ ρ(x + ay) for each a ∈ A, so ‖ρ(x)‖ ≤
‖ρ(x+ ay)‖. Hence ‖x‖ ≤ ‖x+ ay‖. Thus x ⊥sB y. �

In the following example, we show that the converse of (ii) in Lemma 2.7
does not hold in general.

Example 2.8. Suppose that A = M2(C) as a Finsler module over itself via

ρ(A) = AA∗. Let A = [ 0 0
0 1 ]. For any B =

[
b1 b2
b3 b4

]
we have

‖I +BA‖ =

∥∥∥∥[ 1 b2
0 b4 + 1

]∥∥∥∥ ≥ 1 = ‖I‖.

Therefore I ⊥sB A, we, however, have I 6⊥sρ A since if B = [ 0 1
0 0 ], then

ρ(I +BA)− ρ(I) =

[
2 1
1 1

]
−
[

1 0
0 1

]
=

[
1 1
1 0

]
� 0,

because

sp

([
1 1
1 0

])
= {1−

√
5

2
,

1 +
√

5

2
} * R+.

Now we obtain some characterizations of the strongly ρ-orthogonality in the
framework of Finsler C∗-modules.

Proposition 2.9. Let E be a Finsler module over a unital C∗-algebra A and
x, y ∈ E. Then x ⊥sρ y if and only if x ⊥ρ ay for all a ∈ A.

Proof. If x ⊥sρ y, then for each a ∈ A, λ ∈ C we have λa ∈ A and

ρ(x) ≤ ρ(x+ λ.ay).

Hence x ⊥ρ ay.
Conversely, let x ⊥ρ ay for each a ∈ A. Then for each scalar λ ∈ C we have

ρ(x) ≤ ρ(x + λay). Putting λ = 1 we conclude that ρ(x) ≤ ρ(x + ay). Hence
x ⊥sρ y. �

Note that if A ∼= C, then by a simple computation we infer that x ⊥ρ y if
and only if x ⊥sρ y. It is an interesting problem whether the converse is true or
not.

It is evident that x ⊥ρ y does not imply x ⊥sρ y in general. It however holds
under certain conditions. For example if A = B(H), regarded as a Finsler
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module over itself via ρ(T ) = TT ∗ and Z (B(H)) denotes the center of B(H),
then Z (B(H)) = CI = {λI : λ ∈ C} ' C.

Let T, S ∈ B(H) such that T ⊥ρ S and U ∈ Z (B(H)). Then there is
λ ∈ C such that U = λI. Hence ρ(T ) ≤ ρ(T + λS) = ρ(T + λIS). Therefore
ρ(T ) ≤ ρ(T + US) for each U ∈ Z (B(H)).

3. Relation between ϕ-morphisms of Finsler C∗-modules and
orthogonality

Let (H, 〈·, ·〉) be a complex Hilbert space and T : H → H be a surjective
map, which satisfies |〈Tx, Ty〉| = |〈x, y〉|. The Wigner theorem states that T
is of the form Tx = ϕ(x)Ux for each x ∈ H, where U : H → H is either a
unitary or an antiunitary operator and ϕ : H → C is a phase function (i.e., its
values are of modulus one) [8].

In this section, we introduce the notion of ϕ-morphism of Finsler C∗-modules
and try to construct a version of Wigner’s theorem in the framework of Finsler
C∗-modules. Indeed we replace the above condition by that of preserving
Birkhoff-James orthogonality and show that under certain conditions each sur-
jective linear map between Finsler C∗-modules, which preserves the Birkhoff-
James orthogonality is a ϕ- morphism.

Definition 3.1. Suppose that (E, ρ) and (F, ρ′) are Finsler modules over C∗-
algebras A and B, respectively, and ϕ : A → B is a ∗-homomorphism of C∗-
algebras. A linear map Ψ : E → F is said to be a ϕ-morphism of Finsler
modules if for each x ∈ E and a ∈ A the following conditions are satisfied:

(i) ρ′(Ψ(x)) = ϕ(ρ(x));
(ii) Ψ(ax) = ϕ(a)Ψ(x).

By [1, Theorem 3.2], let Ψ be a ϕ-morphism between full Finsler modules.
If Ψ(or ϕ) is injective, then ϕ and also Ψ are isometry.

Theorem 3.2. Suppose that (E, ρ) and (F, ρ′) are Finsler modules over C∗-
algebras A and B, respectively, ϕ : A → B is a ∗-homomorphism of C∗-algebras
and Ψ is a ϕ-morphism of Finsler modules. If x ⊥ρ y, then Ψ(x) ⊥ρ′ Ψ(y).

Proof. Let x ⊥ρ y. Then ρ(x) ≤ ρ(x+ λy). Thus

ϕ(ρ(x)) ≤ ϕ(ρ(x+ λy)),

since ϕ : A → B is a ∗-homomorphism. Further,

ρ′(Ψ(x)) ≤ ρ′(Ψ(x+ λy)) = ρ′(Ψ(x) + λΨ(y)),

since Ψ is a ϕ-morphism. Hence Ψ(x) ⊥ρ′ Ψ(y). �

Theorem 3.3. Suppose that (E, ρ) and (F, ρ′) are Finsler modules over C∗-
algebras A and B, respectively, ϕ : A → B is an injective ∗-homomorphism
of C∗-algebras and Ψ is a ϕ-morphism of Finsler modules. If x ⊥B y, then
Ψ(x) ⊥B Ψ(y).
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Proof. Let x ⊥BJ y. Then ‖x‖ ≤ ‖x + λy‖ for each λ ∈ C. Hence ‖ρ(x)‖ ≤
‖ρ(x + λy)‖ for each λ ∈ C. Since ϕ is injective, it is an isometry. Hence
‖ϕ(ρ(x))‖ ≤ ‖ϕ(ρ(x+ λy))‖. Since Ψ is a ϕ-morphism, we have ‖ρ′(Ψ(x))‖ ≤
‖ρ′(Ψ(x+ λy))‖. Thus

‖Ψ(x)‖ ≤ ‖Ψ(x+ λy)‖ = ‖Ψ(x) + λΨ(y)‖.

Therefore Ψ(x) ⊥B Ψ(y). �

Lemma 3.4. Suppose that (E, ρ) and (F, ρ′) are full Finsler modules over C∗-
algebras A and B, respectively, ϕ : A → B is a map and Ψ is a surjective
linear operator of Finsler modules such that Ψ(ax) = ϕ(a)Ψ(x) for each x ∈ E
and a ∈ A. Then ϕ is a homomorphism. Moreover, if ϕ is continuous and
ρ′(Ψ(x)) = ϕ(ρ(x)) for each x ∈ E, then ϕ is a ∗-homomorphism and Ψ is a
ϕ-morphism.

Proof. Let a, b ∈ A, x ∈ E and λ ∈ C. Then

(ϕ(a+ b)− ϕ(a)− ϕ(b))Ψ(x) = ϕ(a+ b)Ψ(x)− ϕ(a)Ψ(x)− ϕ(b)Ψ(x)

= Ψ((a+ b)x)−Ψ(ax)−Ψ(bx)

= Ψ(ax) + Ψ(bx)−Ψ(ax)−Ψ(bx)

= 0

and

(ϕ(ab)− ϕ(a)ϕ(b))Ψ(x) = ϕ(ab)Ψ(x)− (ϕ(a)ϕ(b))Ψ(x)

= Ψ((ab)x)− ϕ(a)Ψ(bx)

= Ψ(abx)−Ψ(abx)

= 0.

Similarly, (ϕ(λa) − λϕ(a))Ψ(x) = 0. Since Ψ is surjective and F is full, the
map ϕ is a homomorphism by [1, Lemma 1.2].

Let a ∈ A. Since E is full, there is a sequence {un} in F(E) such that

a = limnun, where un =
∑kn
i=1λi,nρ(xi,n) for some λi,n ∈ C and xi,n ∈ E. If ϕ

is continuous, then

ϕ(a∗) = lim
n
ϕ

(
kn∑
i=1

λi,nρ(xi,n)

)∗
= lim

n

kn∑
i=1

λi,nϕ(ρ(xi,n))

= lim
n

kn∑
i=1

λi,nρ
′(Ψ(xi,n)) =

(
lim
n

kn∑
i=1

λi,nρ
′(Ψ(xi,n))

)∗

=

(
ϕ(lim

n

kn∑
i=1

λi,nρ(xi,n))

)∗
= (ϕ(a))∗.

Hence ϕ is a ∗-homomorphism and Ψ is a ϕ-morphism. �
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Theorem 3.5. Suppose that (E, ρ) and (F, ρ′) are full Finsler modules over
C∗-algebras A and B, respectively, Ψ : E → F is a surjective linear operator
that preserves ⊥B and Ψ(ρ(x)y) = ρ′(Ψ(x))Ψ(y) for each x, y ∈ E. Then there
exists a ∗-isomorphism ϕ : A → B such that Ψ is a ϕ-morphism of Finsler
modules.

Proof. Since Ψ preserves Birkhoff-James orthogonality, by [6, Theorem 3.1],
there is a constant k > 0 such that ‖Ψ(x)‖ = k‖x‖. Hence Ψ is injective and
continuous.

Let us define ϕ : F(E)→ F(F ) by

ϕ

(
n∑
i=1

λiρ(xi)

)
=

n∑
i=1

λiρ
′(Ψ(xi))

for λi ∈ C and xi ∈ E.
If
∑n
i=1λiρ(xi) = 0, then

∑n
i=1λiρ(xi)z = 0 for each z ∈ E. Hence

Ψ (
∑n
i=1λiρ(xi)z) =

∑n
i=1λiΨ(ρ(xi)z) = 0, since Ψ is linear. By the as-

sumption,
∑n
i=1λiρ

′(Ψ(xi))Ψ(z) = 0. Hence
∑n
i=1λiρ

′(Ψ(xi)) = 0, since Ψ
is surjective. Thus ϕ is well-define and ρ′(Ψ(x)) = ϕ(ρ(x)) for each x ∈ E.

Let u =
∑n
i=1λiρ(xi) be an arbitrary element of F(E). Then

ϕ(u)Ψ(z) =

n∑
i=1

λiρ
′(Ψ(xi))Ψ(z) = Ψ

(
n∑
i=1

λiρ(xi)z

)
= Ψ(uz).

By Lemma 3.4, ϕ is linear on F(E).
Let {un} be a sequence in F(E) such that un → u. Then unz → uz for all

z ∈ E. In view of the continuity of Ψ, we have limnΨ(unz) = Ψ(uz). On the
other hand ϕ(u)Ψ(z) = Ψ(uz). Hence, limnϕ(un)Ψ(z) = ϕ(u)Ψ(z), whence
limn(ϕ(un) − ϕ(u))Ψ(z) = 0. Since Ψ is surjective, limn(bn)w = 0 for each
w ∈ F , where bn = ϕ(un) − ϕ(u). From the continuity of ρ′ we deduce that
limnρ

′(bnw) = ρ′(limn(bn)w) = 0. Therefore limn(bnρ
′(w)b∗n) = 0. Due to F

is full, limn(bnbb
∗b∗n) = 0 for all b ∈ B. Thus limn‖bnb‖2 = limn‖b∗b∗n‖2 = 0,

whence we get limnb
∗b∗nbnb = 0 for all b ∈ B.

Now, in contrary, assume that limnbn 6= 0. Then there would exist ε > 0 and
a subsequence {bnk

} of {bn} such that ε ≤ ‖bnk
‖, or equivalently, ε2 ≤ b∗nk

bnk
.

Hence ε2b∗b ≤ b∗b∗nk
bnk

b for all b ∈ B. It follows that b = 0 for all b ∈ B
giving a contradiction. Hence limnbn = 0 and so limnϕ(un) = ϕ(u). Thus ϕ is
continuous. It should be noted that B is a Banach space. We can extend ϕ to
a linear map ϕ from A = F(E) into F(F ) = B and denote it by the same ϕ.

Let a ∈ A. Then a = limn

∑kn
i=1λi,nρ(xi,n) for some λi,n ∈ C and xi,n ∈ E.

It follows from continuity of ϕ that

ϕ(a) = ϕ

(
lim
n

kn∑
i=1

λi,nρ(xi,n)

)
= lim

n

kn∑
i=1

λi,nρ
′(Ψ(xi,n)).
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Therefore, for each x ∈ E

ϕ(a)Ψ(x) =

(
lim
n

kn∑
i=1

λi,nρ
′(Ψ(xi,n))

)
Ψ(x)

= lim
n

kn∑
i=1

(λi,nΨ(ρ(xi,n)x))

= Ψ(lim
n

kn∑
i=1

λi,nρ(xi,n)x)

= Ψ(ax).

Employing Lemma 3.4, we observe that ϕ is a ∗-homomorphism and Ψ is a
ϕ-morphism of Finsler modules. By [2, Theorem 3.2(iii)], ϕ is an injective
∗-homomorphism, since E is a full Finsler module over A and Ψ is injective.
Due to Ψ is surjective and F is a full Finsler module over B, from [2, Theorem
3.4(iv)], we deduce that ϕ is surjective. Thus ϕ : A → B is a ∗-isomorphism of
C∗-algebras. �

Remark 3.6. In Theorem 3.5, we can replace the assumption ⊥B by both the
continuity and the injectivity of Ψ.

Recall that if A and B are C∗-algebras, E and F are Finsler module over A
and B, respectively, then a linear operator Ψ : E → F is said to be a unitary
operator if there exists an injective ∗-homomorphism ϕ : A −→ B such that Ψ
is a surjective ϕ-homomorphism.

Remark 3.7. If A and B are C∗-algebras, E and F are Finsler module over
A and B, respectively, and Ψ : E → F is a unitary operator, then there
exists an injective ∗-homomorphism ϕ : A −→ B such that Ψ is a surjective
ϕ-homomorphism. Hence, it preserves the Birkhoff-James orthogonality. It
follows from [2, Theorem 3.2(i)] that Ψ is an isometry.
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