Commun. Korean Math. Soc. **33** (2018), No. 2, pp. 561–569 https://doi.org/10.4134/CKMS.c170219 pISSN: 1225-1763 / eISSN: 2234-3024

ORTHOGONALITY IN FINSLER C^* -MODULES

MARYAM AMYARI AND REYHANEH HASSANNIAH

ABSTRACT. In this paper, we introduce some notions of orthogonality in the setting of Finsler C^* -modules and investigate their relations with the Birkhoff-James orthogonality. Suppose that (E, ρ) and (F, ρ') are Finsler modules over C^* -algebras \mathcal{A} and \mathcal{B} , respectively, and $\varphi : \mathcal{A} \to \mathcal{B}$ is a *-homomorphism. A map $\Psi : E \to F$ is said to be a φ -morphism of Finsler modules if $\rho'(\Psi(x)) = \varphi(\rho(x))$ and $\Psi(ax) = \varphi(a)\Psi(x)$ for all $a \in \mathcal{A}$ and all $x \in E$. We show that each φ - morphism of Finsler C^* -modules preserves the Birkhoff-James orthogonality and conversely, each surjective linear map between Finsler C^* -modules preserving the Birkhoff-James orthogonality is a φ -morphism under certain conditions. In fact, we state a version of Wigner's theorem in the framework of Finsler C^* -modules.

1. Introduction and preliminaries

The notion of orthogonality is originally associated with inner product spaces. In an inner product space, an element x is orthogonal to y if $\langle x, y \rangle = 0$. Recently, various extensions of this notion have been introduced in the setting of normed spaces. Among them, the Birkhoff-James orthogonality is studied extensively in [3–5]. This notion states that an element x of a normed linear space X is orthogonal to $y \in X$, in short; $x \perp_B y$, if for each $\lambda \in \mathbb{C}$

$$\|x\| \le \|x + \lambda y\|.$$

The characterizations of the Birkhoff-James orthogonality in C^* -algebras and Hilbert C^* -modules are presented in several papers such as [3,7,8].

The notion of Finsler module over a C^* -algebra was introduced by Phillips and Weaver [11]. In fact, Finsler modules over C^* -algebras are generalization of Hilbert C^* -modules [10]. Recently, this theory has been developed by several researchers [1,2,9].

Let us recall the definition of a Finlser module. Let \mathcal{A} be a C^* -algebra and \mathcal{A}^+ be the set of all positive elements of \mathcal{A} . An element $a \in A$ is positive, in short $a \geq 0$, if a is self-adjoint and the spectrum of a sp(a) is a subset of

©2018 Korean Mathematical Society

Received May 24, 2017; Accepted June 21, 2017.

²⁰¹⁰ Mathematics Subject Classification. Primary 46L08; Secondary 46L05, 47B65.

Key words and phrases. Finsler $C^*\text{-modules},$ orthogonality, $\varphi\text{-morphism}$ of Finsler $C^*\text{-modules}.$

 $[0, +\infty)$. Let *E* be a left module over \mathcal{A} and let the map $\rho : E \longrightarrow \mathcal{A}^+$ satisfy the following conditions:

(i) the map $||x|| : x \mapsto ||\rho(x)||^{\frac{1}{2}}$ makes E into a Banach space;

(ii) $\rho(ax) = a\rho(x)a^*$ for all $a \in \mathcal{A}$ and $x \in E$.

Then (E, ρ) is called a left Finsler module over \mathcal{A} . A right Finsler module can be defined similarly.

A left Finsler module E over \mathcal{A} is said to be full if the linear span $\{\rho(x) : x \in E\}$, denoted by $\mathcal{F}(E)$, is dense in \mathcal{A} .

As an example, if E is a left Hilbert C^{*}-module over \mathcal{A} , then E together with $\rho(x) = \langle x, x \rangle$ is a left Finsler module over \mathcal{A} , since

$$\rho(ax) = \langle ax, ax \rangle = a \langle x, x \rangle a^* = a \rho(x) a^*.$$

In this paper, we introduce some notions of orthogonality in the setting of Finsler modules over C^* -algebras and investigate their relations with the Birkhoff-James orthogonality. We also show that each φ -morphism of Finsler C^* -modules preserves the Birkhoff-James orthogonality and conversely, each surjective linear map between Finsler C^* -modules which preserves the Birkhoff-James orthogonality is a φ -morphism under certain conditions. We indeed state a version of Wigner's theorem in the framework of Finsler C^* -modules.

2. The Birkhoff-James orthogonality in Finsler C^* -modules

Analogue to the notion of Birkhoff-James orthogonality in the setting Hilbert C^* -modules and the usual Birkhoff-James orthogonality in normed spaces, we present the following notions in Finsler C^* -module content.

Definition 2.1. Let (E, ρ) be a Finsler module over a unital C^* -algebra \mathcal{A} , with unit I and $x, y \in E$. We say that x is strongly Birkhoff-James orthogonal to y with respect to ρ , in short; $x \perp_{B\rho}^s y$, if for each $a \in \mathcal{A}$

$$\rho(x) \le \|\rho(x+ay)\|I.$$

In the definition above, if the role of the elements of the underlying C^* algebra is played by the scalars, we say that x is Birkhoff-James orthogonal to y with respect to ρ , in short; $x \perp_{B\rho} y$, where for each $\lambda \in \mathbb{C}$

$$\rho(x) \le \|\rho(x + \lambda y)\|I.$$

We also say that x is strongly Birkhoff-James orthogonal to y, in short; $x \perp_B^s y$, if for each $a \in \mathcal{A}$

$$\|x\| \le \|x + ay\|.$$

Remark 2.2. It is clear that $x \perp_{B\rho} y$ if and only if $x \perp_B y$, as well as $x \perp_{B\rho}^s y$ if and only if $x \perp_B^s y$. These assertions are deduced from the fact that if $a \in \mathcal{A}$ and $a \geq 0$, then $a \leq MI$ if and only if $||a|| \leq M$ for some $M \geq 0$.

It is obvious that $x \perp_{B\rho}^{s} y$ ensures $x \perp_{B\rho} y$.

Definition 2.3. Let (E, ρ) be a Finsler module over a C^* -algebra and $x, y \in E$. We say that x is ρ -orthogonal to y, in short; $x \perp_{\rho} y$, if

$$\rho(x) \leq \rho(x + \lambda y)$$
 for each $\lambda \in \mathbb{C}$.

Evidently, $x \perp_{\rho} y$ ensures $x \perp_{B} y$. The converse of this fact dose not hold in general, as shown in the following example.

Example 2.4. Suppose that $\mathcal{A} = \mathbb{M}_2(\mathbb{C})$ as a Finsler module over itself with $\rho(A) = AA^*$. Let $A = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Then for each $\lambda \in \mathbb{C}$

$$\|A + \lambda B\| = \left\| \begin{bmatrix} 1+\lambda & 0\\ 0 & i \end{bmatrix} \right\| = \max\{|1+\lambda|, |\mathbf{i}|\} \ge 1 = \|\mathbf{A}\|,$$

whence $A \perp_B B$. We, however, have $A \not\perp_{\rho} B$, since

$$\rho(A) = I \text{ and } \rho(A + \lambda B) = \begin{bmatrix} 1+\lambda & 0\\ 0 & i \end{bmatrix} \begin{bmatrix} \overline{1+\lambda} & 0\\ 0 & -i \end{bmatrix} = \begin{bmatrix} |1+\lambda|^2 & 0\\ 0 & 1 \end{bmatrix}.$$

If $\lambda = -1$, then

$$\rho(A+\lambda B)-\rho(A) = \begin{bmatrix} 0 & 0\\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0\\ 0 & 0 \end{bmatrix} \not\ge 0,$$

because sp $\left(\begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} \right) = \{ -1, 0 \} \nsubseteq \mathbb{R}^+.$

Proposition 2.5. Let (E, ρ) be a Finsler module over a C^* -algebra \mathcal{A} and $x, y \in E$.

(i) If $x \perp_{\rho} y$, then $ax \perp_{\rho} ay$ for each $a \in \mathcal{A}$.

(ii) If $ux \perp_{\rho} uy$ for each unitary element $u \in \mathcal{A}$, then $x \perp_{\rho} y$.

Proof. (i) If $x \perp_{\rho} y$, then $\rho(x) \leq \rho(x + \lambda y)$ for each $\lambda \in \mathbb{C}$. Thus

$$\rho(ax) = a\rho(x)a^* \le a\rho(x+\lambda y)a^* = \rho(ax+\lambda ay).$$

Hence $ax \perp_{\rho} ay$.

(ii) Let $ux \perp_{\rho} uy$ for each unitary element $u \in \mathcal{A}$. Then $\rho(ux) \leq \rho(ux + \lambda uy)$ for each $\lambda \in \mathbb{C}$. Thus

$$\rho(x) = u^* u \rho(x) u^* u \leqslant u^* u \rho(x + \lambda y) u^* u = \rho(x + \lambda y).$$

It ensures that $x \perp_{\rho} y$.

Note that by the above proposition, we may deduce $ux \perp_{\rho} uy$ for some and hence for each unitary element $u \in \mathcal{A}$ if and only if $x \perp_{\rho} y$.

The following definition is a generalization of Definition 2.3.

Definition 2.6. Let (E, ρ) be a Finsler module over a C^* -algebra \mathcal{A} and $x, y \in E$. We say that x is strongly ρ -orthogonal to y, in short $x \perp_{\rho}^{s} y$, if for all $a \in \mathcal{A}$,

$$\rho(x) \le \rho(x + ay)$$

If \mathcal{A} is unital, then $x \perp_{\rho}^{s} y$ implies $x \perp_{\rho} y$. In fact, if $x \perp_{\rho}^{s} y$, then $\rho(x) \leq \rho(x + (1.\lambda)y) = \rho(x + \lambda y)$ for each $\lambda \in \mathbb{C}$. Hence $x \perp_{\rho} y$.

Lemma 2.7. Let (E, ρ) be a Finsler module over a unital C^* -algebra \mathcal{A} and $x, y \in E$.

(i) $x \perp_{\rho}^{s} y$ if and only if $bx \perp_{\rho}^{s} by$ for each $b \in \mathscr{Z}(\mathcal{A})$.

(ii) If $x \perp_{\rho}^{s} y$, then $x \perp_{B}^{s} y$.

Proof. (i) Let $x \perp_{\rho}^{s} y$. Then $\rho(x) \leq \rho(x + ay)$ for each $a \in \mathcal{A}$. In addition, $\rho(bx) = b\rho(x)b^* \le b\rho(x+ay)b^* = \rho(bx+bay) = \rho(bx+aby) \text{ for each } b \in \mathscr{Z}(\mathcal{A}),$ whence $bx \perp_{\rho}^{s} by$.

Conversely, let $bx \perp_{\rho}^{s} by$ for each $b \in \mathscr{Z}(\mathcal{A})$. Taking b = 1 we deduce that

 $\begin{array}{l} x \perp_{\rho}^{s} y. \\ \text{(ii) Let } x \perp_{\rho}^{s} y. \text{ Then } \rho(x) \leq \rho(x+ay) \text{ for each } a \in \mathcal{A}, \text{ so } \|\rho(x)\| \leq \\ \|\rho(x+ay)\|. \text{ Hence } \|x\| \leq \|x+ay\|. \text{ Thus } x \perp_{B}^{s} y. \end{array}$

In the following example, we show that the converse of (ii) in Lemma 2.7 does not hold in general.

Example 2.8. Suppose that $\mathcal{A} = \mathbb{M}_2(\mathbb{C})$ as a Finsler module over itself via $\rho(A) = AA^*$. Let $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. For any $B = \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix}$ we have

$$||I + BA|| = \left\| \begin{bmatrix} 1 & b_2 \\ 0 & b_4 + 1 \end{bmatrix} \right\| \ge 1 = ||I||.$$

Therefore $I \perp_B^s A$, we, however, have $I \not\perp_{\rho}^s A$ since if $B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, then

$$\rho(I+BA)-\rho(I) = \begin{bmatrix} 2 & 1\\ 1 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1\\ 1 & 0 \end{bmatrix} \not\ge 0,$$

because

$$\operatorname{sp}\left(\left[\begin{array}{cc}1&1\\1&0\end{array}\right]\right) = \left\{\frac{1-\sqrt{5}}{2},\frac{1+\sqrt{5}}{2}\right\} \nsubseteq \mathbb{R}^+.$$

Now we obtain some characterizations of the strongly ρ -orthogonality in the framework of Finsler C^* -modules.

Proposition 2.9. Let E be a Finsler module over a unital C^* -algebra \mathcal{A} and $x, y \in E$. Then $x \perp_{\rho}^{s} y$ if and only if $x \perp_{\rho} ay$ for all $a \in \mathcal{A}$.

Proof. If $x \perp_{\rho}^{s} y$, then for each $a \in \mathcal{A}, \ \lambda \in \mathbb{C}$ we have $\lambda a \in \mathcal{A}$ and

$$\rho(x) \le \rho(x + \lambda.ay).$$

Hence $x \perp_{\rho} ay$.

Conversely, let $x \perp_{\rho} ay$ for each $a \in \mathcal{A}$. Then for each scalar $\lambda \in \mathbb{C}$ we have $\rho(x) \leq \rho(x + \lambda ay)$. Putting $\lambda = 1$ we conclude that $\rho(x) \leq \rho(x + ay)$. Hence $x \perp_{\rho}^{s} y.$

Note that if $\mathcal{A} \cong \mathbb{C}$, then by a simple computation we infer that $x \perp_{\rho} y$ if and only if $x \perp_{\rho}^{s} y$. It is an interesting problem whether the converse is true or not.

It is evident that $x \perp_{\rho} y$ does not imply $x \perp_{\rho}^{s} y$ in general. It however holds under certain conditions. For example if $\mathcal{A} = \mathsf{B}(\mathcal{H})$, regarded as a Finsler

module over itself via $\rho(T) = TT^*$ and $\mathscr{Z}(\mathsf{B}(\mathcal{H}))$ denotes the center of $\mathsf{B}(\mathcal{H})$, then $\mathscr{Z}(\mathsf{B}(\mathcal{H})) = \mathbb{C}I = \{\lambda I : \lambda \in \mathbb{C}\} \simeq \mathbb{C}$.

Let $T, S \in \mathsf{B}(\mathcal{H})$ such that $T \perp_{\rho} S$ and $U \in \mathscr{Z}(\mathsf{B}(\mathcal{H}))$. Then there is $\lambda \in \mathbb{C}$ such that $U = \lambda I$. Hence $\rho(T) \leq \rho(T + \lambda S) = \rho(T + \lambda IS)$. Therefore $\rho(T) \leq \rho(T + US)$ for each $U \in \mathscr{Z}(\mathsf{B}(\mathcal{H}))$.

3. Relation between φ -morphisms of Finsler C^* -modules and orthogonality

Let $(H, \langle \cdot, \cdot \rangle)$ be a complex Hilbert space and $T : H \to H$ be a surjective map, which satisfies $|\langle Tx, Ty \rangle| = |\langle x, y \rangle|$. The Wigner theorem states that Tis of the form $Tx = \varphi(x)Ux$ for each $x \in H$, where $U : H \to H$ is either a unitary or an antiunitary operator and $\varphi : H \to \mathbb{C}$ is a phase function (i.e., its values are of modulus one) [8].

In this section, we introduce the notion of φ -morphism of Finsler C^* -modules and try to construct a version of Wigner's theorem in the framework of Finsler C^* -modules. Indeed we replace the above condition by that of preserving Birkhoff-James orthogonality and show that under certain conditions each surjective linear map between Finsler C^* -modules, which preserves the Birkhoff-James orthogonality is a φ - morphism.

Definition 3.1. Suppose that (E, ρ) and (F, ρ') are Finsler modules over C^* algebras \mathcal{A} and \mathcal{B} , respectively, and $\varphi : \mathcal{A} \to \mathcal{B}$ is a *-homomorphism of C^* algebras. A linear map $\Psi : E \to F$ is said to be a φ -morphism of Finsler modules if for each $x \in E$ and $a \in \mathcal{A}$ the following conditions are satisfied:

- (i) $\rho'(\Psi(x)) = \varphi(\rho(x));$
- (ii) $\Psi(ax) = \varphi(a)\Psi(x)$.

By [1, Theorem 3.2], let Ψ be a φ -morphism between full Finsler modules. If $\Psi(\text{or } \varphi)$ is injective, then φ and also Ψ are isometry.

Theorem 3.2. Suppose that (E, ρ) and (F, ρ') are Finsler modules over C^* algebras \mathcal{A} and \mathcal{B} , respectively, $\varphi : \mathcal{A} \to \mathcal{B}$ is a *-homomorphism of C^* -algebras and Ψ is a φ -morphism of Finsler modules. If $x \perp_{\rho} y$, then $\Psi(x) \perp_{\rho'} \Psi(y)$.

Proof. Let $x \perp_{\rho} y$. Then $\rho(x) \leq \rho(x + \lambda y)$. Thus

$$\varphi(\rho(x)) \le \varphi(\rho(x + \lambda y)),$$

since $\varphi : \mathcal{A} \to \mathcal{B}$ is a *-homomorphism. Further,

$$\rho'(\Psi(x)) \le \rho'(\Psi(x+\lambda y)) = \rho'(\Psi(x) + \lambda \Psi(y)),$$

since Ψ is a φ -morphism. Hence $\Psi(x) \perp_{\rho'} \Psi(y)$.

Theorem 3.3. Suppose that (E, ρ) and (F, ρ') are Finsler modules over C^* algebras \mathcal{A} and \mathcal{B} , respectively, $\varphi : \mathcal{A} \to \mathcal{B}$ is an injective *-homomorphism of C^* -algebras and Ψ is a φ -morphism of Finsler modules. If $x \perp_B y$, then $\Psi(x) \perp_B \Psi(y)$.

Proof. Let $x \perp_{BJ} y$. Then $||x|| \leq ||x + \lambda y||$ for each $\lambda \in \mathbb{C}$. Hence $||\rho(x)|| \leq ||\rho(x + \lambda y)||$ for each $\lambda \in \mathbb{C}$. Since φ is injective, it is an isometry. Hence $||\varphi(\rho(x))|| \leq ||\varphi(\rho(x + \lambda y))||$. Since Ψ is a φ -morphism, we have $||\rho'(\Psi(x))|| \leq ||\rho'(\Psi(x + \lambda y))||$. Thus

$$\|\Psi(x)\| \le \|\Psi(x+\lambda y)\| = \|\Psi(x)+\lambda\Psi(y)\|.$$

Therefore $\Psi(x) \perp_B \Psi(y)$.

Lemma 3.4. Suppose that (E, ρ) and (F, ρ') are full Finsler modules over C^* algebras \mathcal{A} and \mathcal{B} , respectively, $\varphi : \mathcal{A} \to \mathcal{B}$ is a map and Ψ is a surjective linear operator of Finsler modules such that $\Psi(ax) = \varphi(a)\Psi(x)$ for each $x \in E$ and $a \in \mathcal{A}$. Then φ is a homomorphism. Moreover, if φ is continuous and $\rho'(\Psi(x)) = \varphi(\rho(x))$ for each $x \in E$, then φ is a *-homomorphism and Ψ is a φ -morphism.

Proof. Let $a, b \in \mathcal{A}, x \in E$ and $\lambda \in \mathbb{C}$. Then

$$\begin{aligned} (\varphi(a+b) - \varphi(a) - \varphi(b))\Psi(x) &= \varphi(a+b)\Psi(x) - \varphi(a)\Psi(x) - \varphi(b)\Psi(x) \\ &= \Psi((a+b)x) - \Psi(ax) - \Psi(bx) \\ &= \Psi(ax) + \Psi(bx) - \Psi(ax) - \Psi(bx) \\ &= 0 \end{aligned}$$

and

$$\begin{aligned} (\varphi(ab) - \varphi(a)\varphi(b))\Psi(x) &= \varphi(ab)\Psi(x) - (\varphi(a)\varphi(b))\Psi(x) \\ &= \Psi((ab)x) - \varphi(a)\Psi(bx) \\ &= \Psi(abx) - \Psi(abx) \\ &= 0. \end{aligned}$$

Similarly, $(\varphi(\lambda a) - \lambda \varphi(a))\Psi(x) = 0$. Since Ψ is surjective and F is full, the map φ is a homomorphism by [1, Lemma 1.2].

Let $a \in \mathcal{A}$. Since E is full, there is a sequence $\{u_n\}$ in $\mathcal{F}(E)$ such that $a = \lim_{n \to \infty} u_n$, where $u_n = \sum_{i=1}^{k_n} \lambda_{i,n} \rho(x_{i,n})$ for some $\lambda_{i,n} \in \mathbb{C}$ and $x_{i,n} \in E$. If φ is continuous, then

$$\varphi(a^*) = \lim_{n} \varphi\left(\sum_{i=1}^{k_n} \lambda_{i,n} \rho(x_{i,n})\right)^* = \lim_{n} \sum_{i=1}^{k_n} \overline{\lambda_{i,n}} \varphi(\rho(x_{i,n}))$$
$$= \lim_{n} \sum_{i=1}^{k_n} \overline{\lambda_{i,n}} \rho'(\Psi(x_{i,n})) = \left(\lim_{n} \sum_{i=1}^{k_n} \lambda_{i,n} \rho'(\Psi(x_{i,n}))\right)^*$$
$$= \left(\varphi(\lim_{n} \sum_{i=1}^{k_n} \lambda_{i,n} \rho(x_{i,n}))\right)^* = (\varphi(a))^*.$$

Hence φ is a *-homomorphism and Ψ is a φ -morphism.

Theorem 3.5. Suppose that (E, ρ) and (F, ρ') are full Finsler modules over C^* -algebras \mathcal{A} and \mathcal{B} , respectively, $\Psi: E \to F$ is a surjective linear operator that preserves \perp_B and $\Psi(\rho(x)y) = \rho'(\Psi(x))\Psi(y)$ for each $x, y \in E$. Then there exists a *-isomorphism $\varphi : \mathcal{A} \to \mathcal{B}$ such that Ψ is a φ -morphism of Finsler modules.

Proof. Since Ψ preserves Birkhoff-James orthogonality, by [6, Theorem 3.1], there is a constant k > 0 such that $\|\Psi(x)\| = k\|x\|$. Hence Ψ is injective and continuous.

Let us define $\varphi : \mathcal{F}(E) \to \mathcal{F}(F)$ by

$$\varphi\left(\sum_{i=1}^{n}\lambda_i\rho(x_i)\right) = \sum_{i=1}^{n}\lambda_i\rho'(\Psi(x_i))$$

for $\lambda_i \in \mathbb{C}$ and $x_i \in E$.

If $\sum_{i=1}^{n} \lambda_i \rho(x_i) = 0$, then $\sum_{i=1}^{n} \lambda_i \rho(x_i) z = 0$ for each $z \in E$. Hence $\Psi(\sum_{i=1}^{n} \lambda_i \rho(x_i) z) = \sum_{i=1}^{n} \lambda_i \Psi(\rho(x_i) z) = 0$, since Ψ is linear. By the assumption, $\sum_{i=1}^{n} \lambda_i \rho'(\Psi(x_i))\Psi(z) = 0$. Hence $\sum_{i=1}^{n} \lambda_i \rho'(\Psi(x_i)) = 0$, since Ψ is surjective. Thus φ is well-define and $\rho'(\Psi(x)) = \varphi(\rho(x))$ for each $x \in E$.

Let $u = \sum_{i=1}^{n} \lambda_i \rho(x_i)$ be an arbitrary element of $\mathcal{F}(E)$. Then

$$\varphi(u)\Psi(z) = \sum_{i=1}^{n} \lambda_i \rho'(\Psi(x_i))\Psi(z) = \Psi\left(\sum_{i=1}^{n} \lambda_i \rho(x_i)z\right) = \Psi(uz).$$

By Lemma 3.4, φ is linear on $\mathcal{F}(E)$.

Let $\{u_n\}$ be a sequence in $\mathcal{F}(E)$ such that $u_n \to u$. Then $u_n z \to uz$ for all $z \in E$. In view of the continuity of Ψ , we have $\lim_{n} \Psi(u_n z) = \Psi(uz)$. On the other hand $\varphi(u)\Psi(z) = \Psi(uz)$. Hence, $\lim_{n \to \infty} \varphi(u_n)\Psi(z) = \varphi(u)\Psi(z)$, whence $\lim_{n \to \infty} (\varphi(u_n) - \varphi(u)) \Psi(z) = 0$. Since Ψ is surjective, $\lim_{n \to \infty} (b_n) w = 0$ for each $w \in F$, where $b_n = \varphi(u_n) - \varphi(u)$. From the continuity of ρ' we deduce that $\lim_{n} \rho'(b_n w) = \rho'(\lim_{n} (b_n) w) = 0$. Therefore $\lim_{n} (b_n \rho'(w) b_n^*) = 0$. Due to F is full, $\lim_{n} (b_n b b^* b_n^*) = 0$ for all $b \in B$. Thus $\lim_{n} \|b_n b\|^2 = \lim_{n} \|b^* b_n^*\|^2 = 0$, whence we get $\lim_{n} b^* b_n^* b_n b = 0$ for all $b \in B$.

Now, in contrary, assume that $\lim_{n} b_n \neq 0$. Then there would exist $\varepsilon > 0$ and a subsequence $\{b_{n_k}\}$ of $\{b_n\}$ such that $\varepsilon \leq ||b_{n_k}||$, or equivalently, $\varepsilon^2 \leq b_{n_k}^* b_{n_k}$. Hence $\varepsilon^2 b^* b \leq b^* b^*_{n_k} b_{n_k} b$ for all $b \in B$. It follows that b = 0 for all $b \in B$ giving a contradiction. Hence $\lim_{n \to \infty} b_n = 0$ and so $\lim_{n \to \infty} \varphi(u_n) = \varphi(u)$. Thus φ is continuous. It should be noted that \mathcal{B} is a Banach space. We can extend φ to a linear map $\overline{\varphi}$ from $\mathcal{A} = \overline{\mathcal{F}(E)}$ into $\overline{\mathcal{F}(F)} = \mathcal{B}$ and denote it by the same φ .

Let $a \in \mathcal{A}$. Then $a = \lim_{n \ge i=1}^{k_n} \lambda_{i,n} \rho(x_{i,n})$ for some $\lambda_{i,n} \in \mathbb{C}$ and $x_{i,n} \in E$. It follows from continuity of φ that

$$\varphi(a) = \varphi\left(\lim_{n} \sum_{i=1}^{k_n} \lambda_{i,n} \rho(x_{i,n})\right) = \lim_{n} \sum_{i=1}^{k_n} \lambda_{i,n} \rho'(\Psi(x_{i,n})).$$

Therefore, for each $x \in E$

$$\varphi(a)\Psi(x) = \left(\lim_{n}\sum_{i=1}^{k_{n}}\lambda_{i,n}\rho'(\Psi(x_{i,n}))\right)\Psi(x)$$
$$= \lim_{n}\sum_{i=1}^{k_{n}}(\lambda_{i,n}\Psi(\rho(x_{i,n})x))$$
$$= \Psi(\lim_{n}\sum_{i=1}^{k_{n}}\lambda_{i,n}\rho(x_{i,n})x)$$
$$= \Psi(ax).$$

Employing Lemma 3.4, we observe that φ is a *-homomorphism and Ψ is a φ -morphism of Finsler modules. By [2, Theorem 3.2(iii)], φ is an injective *-homomorphism, since E is a full Finsler module over \mathcal{A} and Ψ is injective. Due to Ψ is surjective and F is a full Finsler module over \mathcal{B} , from [2, Theorem 3.4(iv)], we deduce that φ is surjective. Thus $\varphi : \mathcal{A} \to \mathcal{B}$ is a *-isomorphism of C^* -algebras.

Remark 3.6. In Theorem 3.5, we can replace the assumption \perp_B by both the continuity and the injectivity of Ψ .

Recall that if \mathcal{A} and \mathcal{B} are C^* -algebras, E and F are Finsler module over \mathcal{A} and \mathcal{B} , respectively, then a linear operator $\Psi : E \to F$ is said to be a unitary operator if there exists an injective *-homomorphism $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ such that Ψ is a surjective φ -homomorphism.

Remark 3.7. If \mathcal{A} and \mathcal{B} are C^* -algebras, E and F are Finsler module over \mathcal{A} and \mathcal{B} , respectively, and $\Psi : E \to F$ is a unitary operator, then there exists an injective *-homomorphism $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ such that Ψ is a surjective φ -homomorphism. Hence, it preserves the Birkhoff-James orthogonality. It follows from [2, Theorem 3.2(i)] that Ψ is an isometry.

References

- M. Amyari and A. Niknam, A note on Finsler modules, Bull. Iranian Math. Soc. 29 (2003), no. 1, 77–81.
- [2] _____, On homomorphisms of Finsler modules, Int. Math. J. 3 (2003), no. 3, 277–281.
- [3] Lj. Arambašića and R. Rajić, The Birkhoff-James orthogonality in Hilbert C^{*}-modules, Linear Algebra Appl. 437 (2012), no. 7, 1913–1929.
- [4] _____, On three concept of orthogonality in Hilbert C*-modules, Linear Multilinear Algebra 63 (2015), no. 7, 1485–1500.
- [5] G. Birkhoff, Orthogonality in linear metric space, Duke Math. J. 1 (1935), no. 2, 169– 172.
- [6] A. Blanco and A. Turnšek, On maps that preserve orthogonality in normed spaces, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), no. 4, 709–716.
- J. Chmieliński, Operators reversing orthogonality in normed spaces, Adv. Oper. Theory 1 (2016), no. 1, 8–14.

- [8] J. Chmieliński, D. Ilišević, M. S. Moslehian, and Gh. Sadeghi, Perturbation of the Wigner equation in inner product C^{*}-modules, J. Math. Phys. 49 (2008), no. 3, 033519, 8 pp.
- [9] R. Hassanniah, M. Amyari, and M. Hassani, *Imprimitivity Finsler C^{*}-bimodules*, Nonlinear Funct. Anal. Appl. 15 (2016), no. 6, 675–607.
- [10] E. C. Lance, *Hilbert C^{*}-modules*, LMS Lecture Note series 210, Combridge University Press, 1995.
- [11] N. C. Phillips and N. Weaver, Modules with norms which take values in a C*-algebra, Pacific J. Math. 185 (1998), no. 1, 163–181.

MARYAM AMYARI DEPARTMENT OF MATHEMATICS MASHHAD BRANCH ISLAMIC AZAD UNIVERSITY MASHHAD, IRAN *Email address*: amyari@mshdiau.ac.ir; maryam_amyari@yahoo.com REYHANEH HASSANNIAH

DEPARTMENT OF MATHEMATICS MASHHAD BRANCH ISLAMIC AZAD UNIVERSITY MASHHAD, IRAN *Email address*: r.hasannia@yahoo.com