• Title/Summary/Keyword: ${\small{D}}$-Ribose

Search Result 5, Processing Time 0.021 seconds

Effects of Oxygen Supply and Mixed Sugar Concentration on ${\small{D}}$-Ribose Production by a Transketolase-Deficient Bacillus subtilis SPK1

  • Park, Yong-Cheol;Lee, Hae-Jin;Kim, Chang Sup;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.560-564
    • /
    • 2013
  • ${\small{D}}$-Ribose is a value-added five-carbon sugar used for riboflavin production. To investigate the effects of oxygen supply and mixed sugar concentration on microbial production of ${\small{D}}$-ribose, a transketolase-deficient Bacillus subtilis SPK1 was cultured batch-wise using xylose and glucose. A change of agitation speed from 300 rpm to 600 rpm at 1 vvm of air supply increased both the xylose consumption rate and ${\small{D}}$-ribose production rate. Because the sum of the specific consumption rates for xylose and glucose was similar at all agitation speeds, metabolic preferences between xylose and glucose might depend on oxygen supply. Although B. subtilis SPK1 can take up xylose and glucose by the active transport mechanism, a high initial concentration of xylose and glucose was not beneficial for high ${\small{D}}$-ribose production.

Dual Inhibition of PI3K/Akt/mTOR Pathway and Role of Autophagy in Non-Small Cell Lung Cancer Cells

  • Jeong, Eun-Hui;Choi, Hyeong-Sim;Lee, Tae-Gul;Kim, Hye-Ryoun;Kim, Cheol-Hyeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.72 no.4
    • /
    • pp.343-351
    • /
    • 2012
  • Background: The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling axis has emerged as a novel target for cancer therapy. Agents that inhibit this pathway are currently under development for lung cancer treatment. In the present study, we have tested whether dual inhibition of PI3K/Akt/mTOR signaling can lead to enahnced antitumor effects. We have also examined the role of autophagy during this process. Methods: We analyzed the combination effect of the mTOR inhibitor, temsirolimus, and the Akt inhibitor, GSK690693, on the survival of NCI-H460 and A549 non-small cell lung cancer cells. Cell proliferation was determined by MTT assay and apoptosis induction was evaluated by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Autophagy induction was also evaluated by acridine orange staining. Changes of apoptosis or autophagy-related proteins were evaluated by western blot analysis. Results: Combination treatment with temsirolimus and GSK690693 caused synergistically increased cell death in NCI-H460 and A549 cells. This was attributable to increased induction of apoptosis. Caspase 3 activation and poly(ADP-ribose) polymerase cleavage accompanied these findings. Autophagy also increased and inhibition of autophagy resulted in increased cell death, suggesting its cytoprotective role during this process. Conclusion: Taken together, our results suggest that the combination of temsirolimus and GSK690693 could be a novel strategy for lung cancer therapy. Inhibition of autophagy could also be a promising method of enhancing the combination effect of these drugs.

Suppression of EGFR/STAT3 activity by lupeol contributes to the induction of the apoptosis of human non-small cell lung cancer cells

  • TAE‑RIN MIN;HYUN‑JI PARK;KI‑TAE HA;GYOO‑YONG CHI;YUNG‑HYUN CHOI;SHIN‑HYUNG PARK
    • International Journal of Oncology
    • /
    • v.55 no.1
    • /
    • pp.320-330
    • /
    • 2019
  • The aim of this study was to investigate the underlying mechanisms responsible for the anticancer effects of lupeol on human non-small cell lung cancer (NSCLC). MTT assay and Trypan blue exclusion assay were used to evaluate the cell viability. DAPI staining and flow cytometric analysis were used to detect apoptosis. Molecular docking and western blot analysis were performed to determine the target of lupeol. We found that lupeol suppressed the proliferation and colony formation of NSCLC cells in a dose-dependent manner. In addition, lupeol increased chromatin condensation, poly(ADP-ribose) polymerase (PARP) cleavage, sub-G1 cell populations, and the proportion of Annexin V-positive cells, indicating that lupeol triggered the apoptosis of NSCLC cells. Notably, lupeol inhibited the phosphorylation of epithelial growth factor receptor (EGFR). A docking experiment revealed that lupeol directly bound to the tyrosine kinase domain of EGFR. We observed that the signal transducer and activator of transcription 3 (STAT3), a downstream molecule of EGFR, was also dephosphorylated by lupeol. Lupeol suppressed the nuclear translocation and transcriptional activity of STAT3 and downregulated the expression of STAT3 target genes. The constitutive activation of STAT3 by STAT3 Y705D overexpression suppressed lupeol-induced apoptosis, demonstrating that the inhibition of STAT3 activity contributed to the induction of apoptosis. The anticancer effects of lupeol were consistently observed in EGFR tyrosine kinase inhibitor (TKI)-resistant H1975 cells (EGFR L858R/T790M). Taken together, the findings of this study suggest that lupeol may be used, not only for EGFR TKI-naïve NSCLC, but also for advanced NSCLC with acquired resistance to EGFR TKIs.

Reversine induces cell cycle arrest and apoptosis via upregulation of the Fas and DR5 signaling pathways in human colorectal cancer cells

  • YOUNG-LAN PARK;SANG-YOON HA;SUN-YOUNG PARK;JUNG-HO CHOI;MIN-WOO JUNG;DAE-SEONG MYUNG;HYUN-SOO KIM;YOUNG-EUN JOO
    • International Journal of Oncology
    • /
    • v.54 no.5
    • /
    • pp.1875-1883
    • /
    • 2019
  • Reversine, a 2,6-diamino-substituted purine analogue, has been reported to be effective in tumor suppression via induction of cell growth arrest and apoptosis of cancer cells. However, it remains unclear whether reversine exerts anticancer effects on human colorectal cancer cells. In the present study, in vitro experiments were conducted to investigate the anticancer properties of reversine in human colorectal cancer cells. The effect of reversine on human colorectal cancer cell lines, SW480 and HCT-116, was examined using a WST-1 cell viability assay, fluorescence microscopy, flow cytometry, DNA fragmentation, small interfering RNA (siRNA) and western blotting. Reversine treatment demonstrated cytotoxic activity in human colorectal cancer cells. It also induced apoptosis by activating poly(ADP-ribose) polymerase, caspase-3, -7 and -8, and increasing the levels of the pro-apoptotic protein second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI. The pan-caspase inhibitor Z-VAD-FMK attenuated these reversine-induced apoptotic effects on human colorectal cancer cells. Additionally, reversine treatment induced cell cycle arrest in the subG1 and G2/M phases via increase in levels of p21, p27 and p57, and decrease in cyclin D1 levels. The expression of Fas and death receptor 5 (DR5) signaling proteins in SW480 and HCT116 cells was upregulated by reversine treatment. Reversine-induced apoptosis and cell cycle arrest were suppressed by inhibition of Fas and DR5 expression via siRNA. In conclusion, Reversine treatment suppressed tumor progression by the inhibition of cell proliferation, induction of cell cycle arrest and induction of apoptosis via upregulation of the Fas and DR5 signaling pathways in human colorectal cancer cells. The present study indicated that reversine may be used as a novel anticancer agent in human colorectal cancer.

Forkhead-box A1 regulates tumor cell growth and predicts prognosis in colorectal cancer

  • YOUNG-LAN PARK;SEUNG-HUN KIM;SUN-YOUNG PARK;MIN-WOO JUNG;SANG-YOON HA;JUNG-HO CHOI;DAE-SEONG MYUNG;SUNG-BUM CHO;WAN-SIK LEE;HYUN-SOO KIM;YOUNG-EUN JOO
    • International Journal of Oncology
    • /
    • v.54 no.6
    • /
    • pp.2169-2178
    • /
    • 2019
  • Forkhead box A1 (FOXA1) functions as a tumor suppressor gene or an oncogene in various types of cancer; however, the distinct function of FOXA1 in colorectal cancer is unclear. The present study aimed to evaluate whether FOXA1 affects the oncogenic behavior of colorectal cancer cells, and to investigate its prognostic value in colorectal cancer. The impact of FOXA1 on tumor cell behavior was investigated using small interfering RNA and the pcDNA6-myc vector in human colorectal cancer cell lines. To investigate the role of FOXA1 in the progression of human colorectal cancer, an immunohistochemical technique was used to localize FOXA1 protein in paraffin-embedded tissue blocks obtained from 403 patients with colorectal cancer. Tumor cell apoptosis and proliferation were evaluated using a terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay and Ki-67 immunohistochemical staining, respectively. FOXA1 knockdown inhibited tumor cell invasion in colorectal cancer cells, and induced apoptosis and cell cycle arrest. FOXA1 knockdown activated cleaved caspase-poly (ADP-ribose) polymerase, upregulated the expression of p53 upregulated modulator of apoptosis, and downregulated BH3 interacting domain death agonist and myeloid cell leukemia-1, leading to the induction of apoptosis. FOXA1 knockdown increased the phosphorylation level of signal transducer and activator of transcription-3. By contrast, these results were reversed following the overexpression of FOXA1. The overexpression of FOXA1 was associated with differentiation, lymphovascular invasion, advanced tumor stage, depth of invasion, lymph node metastasis and poor survival rate. The mean Ki-67 labeling index value of FOXA1-positive tumors was significantly higher than that of FOXA1-negative tumors. However, no significant association was observed between the expression of FOXA1 and the mean apoptotic index value. These results indicate that FOXA1 is associated with tumor progression via the modulation of tumor cell survival in human colorectal cancer.