• Title/Summary/Keyword: ${\pi}_1$-category of a space

Search Result 4, Processing Time 0.018 seconds

THE LUSTERNIK-SCHNIRELMANN π1-CATEGORY FOR A MAP

  • Hur, Chang Kyu;Yoon, Yeon Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.87-94
    • /
    • 2000
  • In this paper we shall de ne a concept of ${\pi}_1$-category for a map relative to a subset which is a generalization of both the category for a map and the ${\pi}_1$-category of a space, and study some properties of the ${\pi}_1$-category for a map relative to a subset.

  • PDF

HOMOTOPY TYPE OF A 2-CATEGORY

  • Song, Yongjin
    • Korean Journal of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.175-183
    • /
    • 2010
  • The classical group completion theorem states that under a certain condition the homology of ${\Omega}BM$ is computed by inverting ${\pi}_0M$ in the homology of M. McDuff and Segal extended this theorem in terms of homology fibration. Recently, more general group completion theorem for simplicial spaces was developed. In this paper, we construct a symmetric monoidal 2-category ${\mathcal{A}}$. The 1-morphisms of ${\mathcal{A}}$ are generated by three atomic 2-dimensional CW-complexes and the set of 2-morphisms is given by the group of path components of the space of homotopy equivalences of 1-morphisms. The main part of the paper is to compute the homotopy type of the group completion of the classifying space of ${\mathcal{A}}$, which is shown to be homotopy equivalent to ${\mathbb{Z}}{\times}BAut^+_{\infty}$.

ON THE ADMITTANCE OF A FIXED POINT FREE DEFORMATION OF THE SPACE WHICH π1(X) IS INFINITE

  • HAN, SANG-EON;LEE, SIK
    • Honam Mathematical Journal
    • /
    • v.20 no.1
    • /
    • pp.147-152
    • /
    • 1998
  • In this paper, we shall investigate the admittance of a fixed point free deformation(FPFD) on the locally nilpotent spaces when ${\pi}_1(X)$ is infinite. More precisely, for $X{\in}(S_{{\ast}{LN}})$ with ${\pi}_1(X)$ infinite, we prove the admittance of a FPFD where ${\pi}_1(X)$ has the maximal condition on normal subgroups, or ${\pi}_1(X)$ satisfies either the max-${\infty}$ or min-${\infty}$ for non-nilpotent subgroups where $S_{{\ast}{LN}}$ denotes the category of the locally nilpotent spaces and base point preserving continuous maps.

  • PDF

ON THE DIRECT PRODUCTS AND SUMS OF PRESHEAVES

  • PARK, WON-SUN
    • Honam Mathematical Journal
    • /
    • v.1 no.1
    • /
    • pp.21-25
    • /
    • 1979
  • Abelian군(群)의 presheaf에 관한 직적(直積)과 직화(直和)를 Category 입장에서 정의(定義)하고 presheaf $F_{\lambda}\;({\lambda}{\epsilon}{\Lambda})$들의 두 직적(直積)(또는 直和)은 서로 동형적(同型的) 관계(關係)에 있으며, 특히 ${\phi}:X{\rightarrow}Y$가 homeomorphism이라 하고 ${\phi}_*F$를 X상(上)의 presheaf F의 direct image이라 하면 (1) $({\phi}_*F, \;{\phi}_*(f_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$$({\phi}_*F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}}$의 직적(直積)일 때 오직 그때 한하여 $(F,\;(f_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$$(F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$의 직적(直積)이다. (2) $({\phi}_*F,\;{\phi}_*(l_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$$({\phi}_*F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}}$의 직화(直和)일 때 오직 그때 한하여 $(F,\;(l_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$$(F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$의 직화(直和)이다. Let $(F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$ be an indexed set of presheaves of abelian group on topological space X. We can define the cartesian product $$\prod_{{\lambda}{\epsilon}{\Lambda}}\;F_{\lambda}$$ of $(F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$ by $$(\prod_{{\lambda}{\epsilon}{\Lambda}}\;F_{\lambda})(U)=\prod_{{\lambda}{\epsilon}{\Lambda}}(F_{\lambda}(U))$$ for U open in X $${\rho}_v^u:\;(\prod_{{\lambda}{\epsilon}{\Lambda}}\;F_{\lambda})(U){\rightarrow}(\prod_{{\lambda}{\epsilon}{\Lambda}}\;F_{\lambda})(V)((s_{\lambda})_{{\lambda}{\epsilon}{\Lambda}}{\rightarrow}(_{\lambda}{\rho}_v^u(s_{\lambda}))_{{\lambda}{\epsilon}{\Lambda}})$$ for $V{\subseteq}U$ open in X where $_{\lambda}{\rho}^U_V$ is a restriction of $F_{\lambda}$, And we have natural presheaf morphisms ${\pi}_{\lambda}$ and ${\iota}_{\lambda}$ such that ${\pi}_{\lambda}(U):\;({\prod}_\;F_{\lambda})(U){\rightarrow}F_{\lambda}(U)((s_{\lambda})_{{\lambda}{\epsilon}{\Lambda}}{\rightarrow}s_{\lambda})$ ${\iota}_{\lambda}(U):\;F_{\lambda}(U){\rightarrow}({\prod}\;F_{\lambda})(U)(s_{\lambda}{\rightarrow}(o,o,{\cdots}\;{\cdots}o,s_{\lambda},o,{\cdots}\;{\cdots}o)$ for $(s_{\lambda}){\epsilon}{\prod}_{\lambda}\;F_{\lambda}(U)$ and $(s_{\lambda}){\epsilon}F_{\lambda}(U)$.

  • PDF