JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 13, No.1, June 2000

THE LUSTERNIK-SCHNIRELMANN π_1 -CATEGORY FOR A MAP

Chang Kyu hur and Yeon Soo Yoon

ABSTRACT. In this paper we shall define a concept of π_1 -category for a map relative to a subset which is a generalization of both the category for a map and the π_1 -category of a space, and study some properties of the π_1 -category for a map relative to a subset.

1. Introduction

The concept of the category, cat X, of a space X was first devised by L. Lusternik and L. Schnirelmann [LS] in 1934 to finding the number of critical points of a smooth function on a smooth manifold X. The category, cat X, of X is the smallest number of sets, open and contractible in X, needed to cover X. In 1941, Fox [F] altered the origin definition by replacing closed sets by open sets in a covering appeared in the definition of cat X. In fact, these two notions coincide with each other for manifolds or more generally ANR spaces [J1]. The original notion of category can be generalized in a number of ways. One of them is the notion of the category, cat f, for a map $f : X \to Y$, due to Berstein and Ganea [BG] and another one is the notion of the π_1 category, $\pi_1 - cat X$, of a space X defined by Fox [F]. It is well known facts that $\pi_1 - cat X \leq cat X$ for any space X, and that $cat f \leq cat X$ and $cat f \leq cat Y$ for any map $f : X \to Y$.

Received by the editors on May 1, 2000.

¹⁹⁹¹ Mathematics Subject Classifications : 55M30.

Key words and phrases: π_1 -category of a space, π_1 -category for a map.

In this paper, we introduce the notion of the π_1 -category for a map which is a generalization of both the category for a map and the π_1 category of a space, and study some properties of π_1 -category for a map.

2. The Lusternik-Schnirelmann π_1 -category for a map.

We define a concept of π_1 -category for a map which is a generalization of the concept of π_1 -category of a space, and also define a concept of π_1 -category for a map relative to a subset and study some properties of a π_1 -category for a map relative to a subset.

DEFINITION 2.1. Let $f: X \to Y$ be a map. A subset U of X is π_1 -contractible for a map f if the restriction of f on U induces the trivial map $(f_{|U})_* = 0 : \pi_1(U, x) \to \pi_1(Y, f(x))$ for each $x \in U$. Then the Lusternik-Schnirelmann π_1 -category, $\pi_1 - cat f$, for f is the least integer n such that X can be covered by the n open subsets U_1, \dots, U_n in X each of which is π_1 -contractible for f. That is, $\pi_1 - cat f = min\{\#\{U_k\}|X \subset \bigcup U_k, U_k : open in X, \forall x \in U_k, (f_{|U_k})_* = 0 : \pi_1(U_k, x) \to \pi_1(Y, f(x))\}$. If no such number exists then π_1 -cat $f = \infty$.

DEFINITION 2.2. Let A be a subset of X and $f: X \to Y$ a map. Then the Lusternik-Schnirelmann π_1 -category, $\pi_1 - cat f_A$, for f relative to A is the least integer n such that A can be covered by the n open subsets U_1, \dots, U_n in A each of which is π_1 -contractible for $f_{|A}$. That is, $\pi_1 - cat f_A = min\{\#\{U_k\} | A \subset \bigcup U_k, U_k : open in A, \forall a \in U_k, (f_{|U_k})_* = 0 : \pi_1(U_k, a) \to \pi_1(Y, f(a))\}$. If no such number exists then $\pi_1 - cat f_A = \infty$.

Let $i_A : A \to X$ be the inclusion. Then $\pi_1 - cat i_A$ is called sometimes, $\pi_1 - cat_X A$, the π_1 -category of A in X. Also it is clear that $\pi_1 - cat f_A = \pi_1 - cat (f \circ i_A) = \pi_1 - cat (f_{|A|})$ and $\pi_1 - cat f_A = \pi_1 - cat f$ when A = X. The following proposition says that the category is a homotopy invariant. PROPOSITION 2.3. (1) If $f \sim g : X \to Y$, then $\pi_1 - cat f_A = \pi_1 - cat g_A$ for any subset A of X.

(2) $\pi_1 - cat \ f_A = 1$ if and only if $(f_{|A})_* = 0 : \pi_1(A, a) \to \pi_1(Y, f(a))$ for each $a \in A$.

Proof. (1) Let U be an open subset of A. For any $a \in A$, there is a path ω in Y from f(a) to g(a) such that $h_{\omega} \circ (f_{|U})_* = (g_{|U})_*$: $\pi_1(U,a) \to \pi_1(Y,g(a))$, where $h_{\omega} : \pi_1(Y,f(a)) \to \pi_1(Y,g(a))$ is an isomorphism induced by the path ω . Thus we know that $(f_{|U})_* = 0$ iff $(g_{|U})_* = 0$ and $\pi_1 - cat f_A = \pi_1 - cat g_A$.

(2) Since $\{A\}$ is an open covering of A, it follows from the definition. \Box

The following theorem says that the category is subadditive.

THEOREM 2.4. If $f : X \to Y$ is a map and $X = A_1 \cup A_2$, then $\pi_1 - cat \ f \leq \pi_1 - cat \ f_{A_1} + \pi_1 - cat \ f_{A_2}$, where A_1 , A_2 are open subsets of X.

Proof. Let $\pi_1 - cat f_{A_1} = m$ and $\pi_1 - cat f_{A_2} = n$. Then there exit a covering $\{U_i | U_i : \text{open in } A_1, (f_{|U_i})_* = 0 : \pi_1(U_i, a) \to (Y, f(a)), \forall a \in U_i, i = 1, \cdots, m\}$ of A_1 and a covering $\{V_j | V_j : \text{open in } A_2, (f_{|V_j})_* = 0 : \pi_1(V_j, b) \to (Y, f(b)), \forall b \in V_j, j = 1, \cdots, n\}$ of A_2 . Now we want to show that $\{U_i, V_j | i = 1, \cdots, m, j = 1, \cdots, n\}$ is an open covering of X. Since U_i is open in A_1 and A_1 is open in X, U_i is open in X. Similarly, V_j is open in X. Since $A_1 = \bigcup_i U_i, A_2 = \bigcup_j V_j$ and $X = A_1 \cup A_2, \{U_i, V_j\}$ is an open covering of X. Hence $\pi_1 - cat f \leq cat f_{A_1} + \pi_1 - cat f_{A_2}$.

THEOREM 2.5. If $A \subset B \subset X$, then $\pi_1 - cat f_A \leq \pi_1 - cat f_B$.

Proof. Let $\{U_{\alpha}\}$ be a covering of B such that U_{α} is open in B and for each $\alpha, x \in U_{\alpha}, (f_{|U_{\alpha}})_* = 0 : \pi_1(U_{\alpha}, x) \to \pi_1(Y, f(x))$. Then for each U_{α} , there exists an open V_{α} in X such that $U_{\alpha} = V_{\alpha} \cap B$. For each α , let $W_{\alpha} = U_{\alpha} \cap A$. Then $W_{\alpha} = U_{\alpha} \cap A = V_{\alpha} \cap B \cap A = V_{\alpha} \cap A$ is open in A. Since $A = B \cap A \subset \bigcup_{\alpha} (U_{\alpha} \cap A)$, $\{U_{\alpha} \cap A\}$ is an open covering of A. Also, for each α , consider the following commutative diagram;

, where all maps are inclusions. For each W_{α} and each $x \in W_{\alpha}$, $(f_{|W_{\alpha}})_* = (f \circ i \circ j \circ i'_{\alpha})_* = (f \circ i \circ i_{\alpha} \circ k)_* = (f_{|U_{\alpha}})_* \circ (k)_* = 0$: $\pi_1(W_{\alpha}, x) \to \pi_1(Y, f(x))$. This proves the theorem.

Taking B = X in Theorem 2.5, we obtain the following corollary.

COROLLARY 2.6. If A is a subset of X, then $\pi_1 - cat f_A \leq \pi_1 - cat f$.

THEOREM 2.7. Let $f: X \to Y$, $g: Y \to Z$ be maps and A a subset of X. Then $\pi_1 - cat \ (g \circ f)_A \leq min \ \{\pi_1 - cat \ f_A, \ \pi_1 - cat \ g_{f(A)}\}.$

Proof. (1) We show that $\pi_1 - cat \ (g \circ f)_A \leq \pi_1 - cat \ f_A$. Let $\{U_\alpha\}$ be a covering of A such that for each α , U_α is open in A and for each $\alpha, x \in U_\alpha, \ (f_{|U_\alpha})_* = 0 : \pi_1(U_\alpha, x) \to \pi_1(Y, f(x))$. Since $(f_{|U_\alpha})_* = 0$, for each α , and each $x \in U_\alpha, \ ((g \circ f)_{|U_\alpha})_* = g_*(f_{|U_\alpha})_* = 0 : \pi_1(U_\alpha, x) \to \pi_1(Z, g(f(x)))$. Thus $\pi_1 - cat \ (g \circ f)_A \leq \pi_1 - cat \ f_A$.

(2) We show that $\pi_1 - cat \ (g \circ f)_A \leq \pi_1 - cat \ g_{f(A)}$. Let $\{V_\alpha\}$ be a covering of f(A) such that for each α , V_α is open in f(A) and for each α and each $y \in V_\alpha$, $(g_{|V_\alpha})_* = 0 : \pi_1(V_\alpha, y) \to \pi_1(Z, g(y))$. Then for each α , there exists an open U_α in Y such that $V_\alpha = f(A) \cap U_\alpha$. Since $f: X \to Y$ is continuous, $f^{-1}(U_\alpha)$ is open in X and $f^{-1}(U_\alpha) \cap A$ is open in A. Moreover $A = f^{-1}(f(A)) \cap A = f^{-1}(\cup_\alpha V_\alpha) \cap A =$ $\cup_\alpha (f^{-1}(V_\alpha) \cap A) = \cup_\alpha (f^{-1}(U_\alpha) \cap A)$. Therefore $\{f^{-1}(U_\alpha) \cap A\}$ is an open covering of A. For each α , consider the following commutative diagram;

$$V_{\alpha} \xrightarrow{i_{\alpha}} f(A) \xrightarrow{i} Y \xrightarrow{g} Z$$

$$\uparrow f \qquad \qquad \uparrow f$$

$$f^{-1}(U_{\alpha}) \cap A \xrightarrow{j_{\alpha}} X \qquad ,$$

where i_{α} , j_{α} , i are all inclusions. Then for each α and each $x \in f^{-1}(U_{\alpha}) \cap A$, $((g \circ f)_{|f^{-1}(U_{\alpha})\cap A})_* = (g \circ f \circ j_{\alpha})_* = (g \circ i \circ i_{\alpha} \circ f)_* = (g_{|V_{\alpha}})_* \circ (f_{|f^{-1}(U_{\alpha})\cap A})_* = 0 : \pi_1(f^{-1}(U_{\alpha})\cap A, x) \to \pi_1(Z, g(f(x)))$. Thus $\pi_1 - cat \ (g \circ f)_A \leq \pi_1 - cat \ g_{f(A)}$. From (1) and (2), we know that $\pi_1 - cat \ (g \circ f)_A \leq \min \ \{\pi_1 - cat \ f_A, \ \pi_1 - cat \ g_{f(A)}\}$.

COROLLARY 2.8. For any two maps $f : X \to Y$ and $g : Y \to Z$, $\pi_1 - cat (g \circ f) \leq min \{\pi_1 - cat f, \pi_1 - cat g\}$. In particular, $\pi_1 - cat f \leq \pi_1 - cat X$ and $\pi_1 - cat f \leq \pi_1 - cat Y$.

COROLLARY 2.9. For any map $f : X \to Y$ and any subset A of $X, \pi_1 - cat f_A \leq \min \{\pi_1 - cat_Y f(A), \pi_1 - cat_X A\}.$

Proof. In Theorem 2.7, take $g = 1_Y : Y \to Y$. Then we have that $\pi_1 - cat \ f_A \leq \pi_1 - cat \ 1_{f(A)} = \pi_1 - cat_Y f(A)$. From Corollary 2.8, we have that $\pi_1 - cat \ f_A = \pi_1 - cat \ (f \circ i_A) \leq \pi_1 - cat \ i_A = \pi_1 - cat_X A$, where $i_A : A \to X$ is the inclusion. Thus we have that $\pi_1 - cat \ f_A \leq \min \{\pi_1 - cat_Y f(A), \pi_1 - cat_X A\}$.

COROLLARY 2.10. If $h : X' \to X$ has a left homotopy inverse $k : X \to X'$, then for a subset A' of X', $\pi_1 - cat \ h_{A'} = \pi_1 - cat_{X'}A'$.

Proof. From Corollary 2.8, we know that $\pi_1 - cat \ h_{A'} = \pi_1 - cat \ h \circ i' \leq \pi_1 - cat \ i' = \pi_1 - cat_{X'}A'$, where $i' : A' \to X'$ is the inclusion. Now we show that $\pi_1 - cat \ h_{A'} \geq \pi_1 - cat_{X'}A'$. Let $\{V_\alpha\}$ be a covering of A' such that for each α , V_α is open in A' and for each $x' \in V_\alpha$, $(h_{|V_\alpha})_* = 0 : \pi_1(V_\alpha, x') \to \pi_1(X, h(x'))$. Since $k \circ h \sim 1_{X'}$, we know that $(k \circ h)_{|V_\alpha} \sim i'_\alpha : V_\alpha \to X'$, where $i'_\alpha : V_\alpha \to X'$ is the inclusion. For any $x'_0 \in V_\alpha$, let $k \circ h(x'_0) = x'_1$. There exists a path ω in X' from x'_0 to x'_1 such that $(k \circ h_{|V_\alpha})_* = \phi_\omega \circ (i'_\alpha)_*$: $\pi_1(V_\alpha, x'_0) \to \pi_1(X', x'_1)$, where ϕ_ω : $\pi_1(X', x'_0) \to \pi_1(X', x'_1)$ is an isomorphism induced by the path ω . Since $(k \circ h_{|V_\alpha})_* = (k)_* \circ (h_{|V_\alpha})_* = 0$, we know that $(i'_\alpha)_* = 0$. Therefore $\pi_1 - cat h_{A'} \ge \pi_1 - cat_{X'}A'$. This proves the corollary. \Box

The following theorem says that $\pi_1 - cat f_A$ is an invariant of homotopy type.

THEOREM 2.11. Let $f : X \to Y$ be a map and $h : Y \to Z$ a homotopy equivalence with homotopy inverse $k : Z \to Y$. Then for any subset A of X, $\pi_1 - cat f_A = \pi_1 - cat (h \circ f)_A$.

Proof. From Theorem 2.7, we know that $\pi_1 - cat (h \circ f)_A \pi_1 - cat f_A$. Thus we show that $\pi_1 - cat f_A \leq \pi_1 - cat (h \circ f)_A$. Let $\{V_\alpha\}$ be a covering of A such that for each α , V_α is open in A and for each $x \in V_\alpha$, $((h \circ f)_{|V_\alpha})_* = 0 : \pi_1(V_\alpha, x) \to \pi_1(Z, h(f(x)))$. Since $k \circ h \sim 1_Y$, we know $k \circ h \circ f \sim f : X \to Y$. For any $x_0 \in V_\alpha$, let $f(x_0) = y_0$ and $k(h(f(x_0))) = y_1$. Thus there exists a path ω in Y from y_0 to y_1 such that $((k \circ h \circ f)_{|V_\alpha})_* = \phi_\omega \circ (f_{|V_\alpha})_* : \pi_1(V_\alpha, x_0) \to \pi_1(Y, y_1)$, where $\phi_\omega : \pi_1(Y, y_0) \to \pi_1(Y, y_1)$ is an isomorphism induced by the path ω . Since $((k \circ h \circ f)_{|V_\alpha})_* = (k)_* \circ ((h \circ f)_{|V_\alpha})_* = 0$, we have $(f_{|V_\alpha})_* = 0 : \pi_1(V_\alpha, x_0) \to \pi_1(Y, y_0)$. Thus we know that $\pi_1 - cat f_A \leq \pi_1 - cat (h \circ f)_A$.

The following corollary says that $\pi_1 - cat f$ is an invariant of homotopy type.

COROLLARY 2.12. Let $f : X \to Y$ be a map and $h : Y \to Z$ a homotopy equivalence Then $\pi_1 - cat \ f = \pi_1 - cat \ (h \circ f)$.

THEOREM 2.13. Let $f : X \to Y$ be a map and $h : X' \to X$ a homotopy equivalence with homotopy inverse $k : X \to X'$. If A' is a subset of X' with $k \circ h(A') \subset A'$, then $\pi_1 - cat (f \circ h)_{A'} = \pi_1 - cat f_{h(A')}$.

Proof. From Theorem 2.7, we have that $\pi_1 - cat \ (f \circ h)_{A'} \leq \pi_1 - cat \ f_{h(A')}$. Thus we show that $\pi_1 - cat \ f_{h(A')} \leq \pi_1 - cat \ (f \circ h)_{A'}$.

Let $\{V_{\alpha}\}$ be a covering of A' such that for each α V_{α} is open in A' and for each $x' \in V_{\alpha}((f \circ h)_{|V_{\alpha}})_* = 0 : \pi_1(V_{\alpha}, x') \to \pi_1(Y, f(h(x'))).$ Then for each α , there exists an open set U_{α} in X' such that V_{α} = $A' \cap U_{\alpha}$. Since $k : X \to X'$ is continuous, $k^{-1}(U_{\alpha})$ is open in X and $k^{-1}(U_{\alpha}) \cap h(A')$ is open in h(A'). Thus we know, from the fact of $k \circ h(A') \subset A'$, that $k^{-1}(V_{\alpha}) \cap h(A') = k^{-1}(U_{\alpha}) \cap k^{-1}(A') \cap h(A') =$ $k^{-1}(U_{\alpha}) \cap h(A')$ is open in h(A'). Since $\{V_{\alpha}\}$ is a covering of A' and $k \circ h(A') \subset A'$, we have $h(A') = k^{-1}(A') \cap h(A') \subset k^{-1}(\bigcup_{\alpha} V_{\alpha}) \cap h(A') =$ $\cup_{\alpha}(k^{-1}(V_{\alpha})\cap h(A'))$. Therefore $\{k^{-1}(V_{\alpha})\cap h(A')\}$ is an open covering of h(A'). Since $h \circ k \sim 1_X$, we know $f \circ h \circ k \sim f : X \to Y$. For any $x_0 \in k^{-1}(V_{\alpha}) \cap h(A')$, let $f(x_0) = y_0$ and $f(h(k(x_0))) = y_1$. Thus there exists a path ω in Y from y_0 to y_1 such that $((f \circ h \circ k)_{|k^{-1}(V_\alpha) \cap h(A')})_* =$ $\phi_{\omega} \circ (f_{|k^{-1}(V_{\alpha})\cap h(A')})_* : \pi_1(k^{-1}(V_{\alpha})\cap h(A'), x_0) \to \pi_1(Y, y_1), \text{ where } \phi_{\omega}:$ $\pi_1(Y, y_0) \to \pi_1(Y, y_1)$ is an isomorphism induced by the path ω . Since $((f \circ h \circ k)_{|k^{-1}(V_{\alpha})\cap h(A')})_{*} = ((f \circ h)_{|V_{\alpha}})_{*} \circ (k_{|k^{-1}(V_{\alpha})\cap h(A')})_{*} = 0$, we have $(f_{|k^{-1}(V_{\alpha})\cap h(A')})_{*} = 0 : \pi_{1}(k^{-1}(V_{\alpha})\cap h(A'), x_{0}) \to \pi_{1}(Y, y_{0}).$ Thus we know that $\pi_1 - cat f_{h(A')} \leq \pi_1 - cat (f \circ h)_{A'}$.

In Theorem 2.13, taking $f = 1_X : X \to X$ and applying Corollary 2.10, we have the following corollary.

COROLLARY 2.14. Let $h: X' \to X$ be a homotopy equivalence, A'a subset of X' and h(A') = A. Then $\pi_1 - cat_{X'}A' = \pi_1 - cat_XA$. In particular, $\pi_1 - cat X' = \pi_1 - cat X$.

References

- BG. I. Berstein and T. Ganea, The category of a map and of a cohomology class, Fund. Math. 50(2)(1961), 265-279.
- EG. S. Eilenberg ang T. Ganea, On the Lusternik-Schnirelmann category of abstract groups, Ann. Math. 65(3)(1957), 517-518.
- FL. Y. Felix and J. M. Lemaire, On the mapping theorem Lusternik-Schnirelmann category, Topology Vol. 24(1985), 41-43.

- F. R. H. Fox, On the Lusternik-Schnirelmann category, Ann. Math. 42(1941), 333-370.
- J1. I. M. James, On category, in the sence of Lusternik-Schnirelmann, Topology. Vol. 17(1978), 331-348.
- J2. I. M. James, Handbook of Algebraic Topology, Elsevier Science B. V.(1995), 1293-1310
- LS. L. Lusternik and L. Schnirelmann, Method es Topologiques dan les Problems Variationnels, Herman, Paris(1934).
- MHY. E. J. Moon and C. K. Hur and Y. S. Yoon, The relative Lusternik-Schnirelmann category of a subset in a space with respect to a map, J. Chungcheong Math. Vol(11)(1998),1-12

DEPARTMENT OF MATHEMATICS HANNAM UNIVERSITY TAEJON, 306-791, KOREA. *E-mail*: ckh@math.hannam.ac.kr *E-mail*: yoon@math.hannam.ac.kr