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THE LUSTERNIK-SCHNIRELMANN �1-CATEGORY

FOR A MAP

Chang Kyu hur and Yeon Soo Yoon

Abstract. In this paper we shall de�ne a concept of �1-category

for a map relative to a subset which is a generalization of both the

category for a map and the �1-category of a space, and study some

properties of the �1-category for a map relative to a subset.

1. Introduction

The concept of the category, cat X, of a space X was �rst devised by

L. Lusternik and L. Schnirelmann [LS] in 1934 to �nding the number

of critical points of a smooth function on a smooth manifold X. The

category, cat X, of X is the smallest number of sets, open and con-

tractible in X, needed to cover X. In 1941, Fox [F] altered the origin

de�nition by replacing closed sets by open sets in a covering appeared

in the de�nition of cat X. In fact, these two notions coincide with each

other for manifolds or more generally ANR spaces [J1]. The original

notion of category can be generalized in a number of ways. One of

them is the notion of the category, cat f , for a map f : X ! Y , due

to Berstein and Ganea [BG] and another one is the notion of the �1-

category, �1 � cat X, of a space X de�ned by Fox [F]. It is well known

facts that �1� cat X � cat X for any space X, and that cat f � cat X

and cat f � cat Y for any map f : X ! Y .
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In this paper, we introduce the notion of the �1-category for a map

which is a generalization of both the category for a map and the �1-

category of a space, and study some properties of �1-category for a

map.

2. The Lusternik-Schnirelmann �1-category for a map.

We de�ne a concept of �1-category for a map which is a generaliza-

tion of the concept of �1-category of a space, and also de�ne a concept

of �1-category for a map relative to a subset and study some properties

of a �1-category for a map relative to a subset.

Definition 2.1. Let f : X ! Y be a map. A subset U of X is

�1-contractible for a map f if the restriction of f on U induces the

trivial map (fjU)� = 0 : �1(U; x) ! �1(Y; f(x)) for each x 2 U . Then

the Lusternik-Schnirelmann �1-category, �1 � cat f , for f is the least

integer n such that X can be covered by the n open subsets U1; � � � ; Un

in X each of which is �1-contractible for f . That is, �1 � cat f =

minf#fUkgjX �
S
Uk; Uk : open in X; 8x 2 Uk; (fjUk)� = 0 :

�1(Uk; x)! �1(Y; f(x))g. If no such number exists then �1�cat f =1.

Definition 2.2. Let A be a subset of X and f : X ! Y a map.

Then the Lusternik-Schnirelmann �1-category, �1 � cat fA, for f rel-

ative to A is the least integer n such that A can be covered by the n

open subsets U1; � � � ; Un in A each of which is �1-contractible for fjA.

That is, �1 � cat fA = minf#fUkgjA �
S
Uk; Uk : open in A; 8a 2

Uk; (fjUk)� = 0 : �1(Uk; a) ! �1(Y; f(a))g. If no such number exists

then �1 � cat fA =1.

Let iA : A ! X be the inclusion. Then �1 � cat iA is called some-

times, �1 � catXA, the �1-category of A in X. Also it is clear that

�1�cat fA = �1�cat (f�iA) = �1�cat (fjA) and �1�cat fA = �1�cat f

when A = X. The following proposition says that the category is a ho-

motopy invariant.
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Proposition 2.3. (1) If f � g : X ! Y , then �1 � cat fA =

�1 � cat gA for any subset A of X.

(2) �1 � cat fA = 1 if and only if (fjA)� = 0 : �1(A; a) ! �1(Y; f(a))

for each a 2 A.

Proof. (1) Let U be an open subset of A. For any a 2 A, there

is a path ! in Y from f(a) to g(a) such that h! � (fjU)� = (gjU)� :

�1(U; a) ! �1(Y; g(a)), where h! : �1(Y; f(a)) ! �1(Y; g(a)) is an

isomorphism induced by the path !. Thus we know that (fjU)� = 0 i�

(gjU)� = 0 and �1 � cat fA = �1 � cat gA.

(2) Since fAg is an open covering of A, it follows from the de�nition.

The following theorem says that the category is subadditive.

Theorem 2.4. If f : X ! Y is a map and X = A1 [ A2, then

�1� cat f � �1� cat fA1
+�1� cat fA2

, where A1; A2 are open subsets

of X.

Proof. Let �1� cat fA1
= m and �1� cat fA2

= n. Then there exit a

covering fUijUi : open in A1; (fjUi)� = 0 : �1(Ui; a) ! (Y; f(a)); 8a 2

Ui; i = 1; � � � ; mg of A1 and a covering fVjjVj : open in A2; (fjVj )� =

0 : �1(Vj; b) ! (Y; f(b)); 8b 2 Vj; j = 1; � � � ; ng of A2. Now we

want to show that fUi; Vjj i = 1; � � � ; m; j = 1; � � � ; ng is an open

covering of X. Since Ui is open in A1 and A1 is open in X, Ui is open

in X. Similarly, Vj is open in X. Since A1 = [iUi, A2 = [jVj and

X = A1 [ A2, fUi; Vjg is an open covering of X. Hence �1 � cat f �

cat fA1
+ �1 � cat fA2

.

Theorem 2.5. If A � B � X, then �1 � cat fA � �1 � cat fB.

Proof. Let fU�g be a covering of B such that U� is open in B and

for each �; x 2 U�; (fjU�)� = 0 : �1(U�; x)! �1(Y; f(x)). Then for each

U�, there exists an open V� in X such that U� = V� \ B. For each �,

let W� = U� \ A. Then W� = U� \ A = V� \ B \ A = V� \ A is open
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in A. Since A = B \A � [�(U� \A), fU� \Ag is an open covering of

A. Also, for each �, consider the following commutative diagram;

W�

i0�
���! A

j
���! B

i
���! X








x
?
?i�

W� U� \ A
k

���! U�

, where all maps are inclusions. For each W� and each x 2 W�,

(fjW�)� = (f � i � j � i0�)� = (f � i � i� � k)� = (fjU�)� � (k)� = 0 :

�1(W�; x)! �1(Y; f(x)). This proves the theorem.

Taking B = X in Theorem 2.5, we obtain the following corollary.

Corollary 2.6. If A is a subset ofX, then �1�cat fA � �1�cat f .

Theorem 2.7. Let f : X ! Y , g : Y ! Z be maps and A a subset

of X. Then �1 � cat (g � f)A � min f�1 � cat fA; �1 � cat gf(A)g.

Proof. (1) We show that �1 � cat (g � f)A � �1 � cat fA. Let fU�g

be a covering of A such that for each �, U� is open in A and for each

�; x 2 U�, (fjU�)� = 0 : �1(U�; x) ! �1(Y; f(x)). Since (fjU�)� = 0, for

each �; and each x 2 U�, ((g � f)jU�)� = g�(fjU�)� = 0 : �1(U�; x) !

�1(Z; g(f(x))). Thus �1 � cat (g � f)A � �1 � cat fA.

(2) We show that �1 � cat (g � f)A � �1 � cat gf(A). Let fV�g be

a covering of f(A) such that for each �, V� is open in f(A) and for

each � and each y 2 V�, (gjV�)� = 0 : �1(V�; y) ! �1(Z; g(y)). Then

for each �, there exists an open U� in Y such that V� = f(A) \ U�.

Since f : X ! Y is continuous, f�1(U�) is open in X and f
�1(U�)\A

is open in A. Moreover A = f
�1(f(A)) \ A = f

�1([�V�) \ A =

[�(f
�1(V�) \ A) = [�(f

�1(U�) \ A). Therefore ff�1(U�) \ Ag is an

open covering of A. For each �, consider the following commutative
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diagram;

V�
i�

���! f(A)
i

���! Y
g

���! Z
x
?
?f

x
?
?f

f
�1(U�) \ A

j�
���! X ;

where i�; j�; i are all inclusions. Then for each � and each x 2

f
�1(U�) \ A, ((g � f)jf�1(U�)\A)� = (g � f � j�)� = (g � i � i� � f)� =

(gjV�)��(fjf�1(U�)\A)� = 0 : �1(f
�1(U�) \ A; x)! �1(Z; g(f(x))). Thus

�1 � cat (g � f)A � �1 � cat gf(A). From (1) and (2), we know that

�1 � cat (g � f)A � min f�1 � cat fA, �1 � cat gf(A)g.

Corollary 2.8. For any two maps f : X ! Y and g : Y ! Z,

�1�cat (g�f) � min f�1�cat f , �1�cat gg. In particular, �1�cat f �

�1 � cat X and �1 � cat f � �1 � cat Y .

Corollary 2.9. For any map f : X ! Y and any subset A of

X,�1 � cat fA � min f�1 � catY f(A), �1 � catXAg.

Proof. In Theorem 2.7, take g = 1Y : Y ! Y . Then we have that

�1 � cat fA � �1 � cat 1f(A) = �1 � catY f(A). From Corollary 2.8, we

have that �1 � cat fA = �1 � cat (f � iA) � �1 � cat iA = �1 � catXA,

where iA : A ! X is the inclusion. Thus we have that �1 � cat fA �

min f�1 � catY f(A), �1 � catXAg.

Corollary 2.10. If h : X 0 ! X has a left homotopy inverse k :

X ! X
0, then for a subset A0 of X 0, �1 � cat hA0 = �1 � catX0A

0.

Proof. From Corollary 2.8, we know that �1� cat hA0 = �1� cat h �

i
0 � �1 � cat i

0 = �1 � catX0A
0, where i

0 : A0 ! X
0 is the inclusion.

Now we show that �1� cat hA0 � �1� catX0A
0. Let fV�g be a covering

of A0 such that for each � , V� is open in A
0 and for each x

0 2 V�,

(hjV�)� = 0 : �1(V�; x
0) ! �1(X; h(x

0)). Since k � h � 1X0 , we know

that (k � h)jV� � i
0
� : V� ! X

0, where i0� : V� ! X
0 is the inclusion.

For any x
0
0 2 V�, let k � h(x

0
0) = x

0
1. There exists a path ! in X

0 from
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x
0
0 to x

0
1 such that (k � hjV�)� = �! � (i

0
�)� : �1(V�; x

0
0) ! �1(X

0
; x

0
1),

where �! : �1(X
0
; x

0
0) ! �1(X

0
; x

0
1) is an isomorphism induced by the

path !. Since (k � hjV�)� = (k)� � (hjV�)� = 0, we know that (i0�)� = 0.

Therefore �1 � cat hA0 � �1 � catX0A
0. This proves the corollary.

The following theorem says that �1 � cat fA is an invariant of ho-

motopy type.

Theorem 2.11. Let f : X ! Y be a map and h : Y ! Z a

homotopy equivalence with homotopy inverse k : Z ! Y . Then for

any subset A of X, �1 � cat fA = �1 � cat (h � f)A.

Proof. From Theorem 2.7, we know that �1�cat (h�f)A�1�cat fA.

Thus we show that �1 � cat fA � �1 � cat (h � f)A. Let fV�g be

a covering of A such that for each �, V� is open in A and for each

x 2 V�, ((h�f)jV�)� = 0 : �1(V�; x)! �1(Z; h(f(x))). Since k �h � 1Y ,

we know k � h � f � f : X ! Y . For any x0 2 V�, let f(x0) = y0

and k(h(f(x0))) = y1. Thus there exists a path ! in Y from y0 to

y1 such that ((k � h � f)jV�)� = �! � (fjV�)� : �1(V�; x0) ! �1(Y; y1),

where �! : �1(Y; y0) ! �1(Y; y1) is an isomorphism induced by the

path !. Since ((k � h � f)jV�)� = (k)� � ((h � f)jV�)� = 0, we have

(fjV�)� = 0 : �1(V�; x0)! �1(Y; y0). Thus we know that �1 � cat fA �

�1 � cat (h � f)A.

The following corollary says that �1� cat f is an invariant of homo-

topy type.

Corollary 2.12. Let f : X ! Y be a map and h : Y ! Z a

homotopy equivalence Then �1 � cat f = �1 � cat (h � f).

Theorem 2.13. Let f : X ! Y be a map and h : X 0 ! X a

homotopy equivalence with homotopy inverse k : X ! X
0. If A0 is a

subset of X 0 with k�h(A0) � A
0, then �1�cat (f �h)A0 = �1�cat fh(A0).

Proof. From Theorem 2.7, we have that �1 � cat (f � h)A0 � �1 �

cat fh(A0). Thus we show that �1 � cat fh(A0) � �1 � cat (f � h)A0.
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Let fV�g be a covering of A0 such that for each � V� is open in A
0

and for each x
0 2 V�((f � h)jV�)� = 0 : �1(V�; x

0) ! �1(Y; f(h(x
0))).

Then for each �, there exists an open set U� in X
0 such that V� =

A
0 \ U�. Since k : X ! X

0 is continuous, k�1(U�) is open in X and

k
�1(U�) \ h(A0) is open in h(A0). Thus we know, from the fact of

k � h(A0) � A
0, that k�1(V�) \ h(A0) = k

�1(U�) \ k
�1(A0) \ h(A0) =

k
�1(U�) \ h(A0) is open in h(A0). Since fV�g is a covering of A0 and

k�h(A0) � A
0, we have h(A0) = k

�1(A0)\h(A0) � k
�1([�V�)\h(A

0) =

[�(k
�1(V�) \ h(A0)). Therefore fk�1(V�) \ h(A0)g is an open covering

of h(A0). Since h � k � 1X , we know f � h � k � f : X ! Y . For any

x0 2 k
�1(V�) \ h(A0), let f(x0) = y0 and f(h(k(x0))) = y1. Thus there

exists a path ! in Y from y0 to y1 such that ((f �h �k)jk�1(V�)\h(A0))� =

�! � (fjk�1(V�)\h(A0))� : �1(k
�1(V�) \ h(A0); x0)! �1(Y; y1), where �! :

�1(Y; y0) ! �1(Y; y1) is an isomorphism induced by the path !. Since

((f � h � k)jk�1(V�)\h(A0))� = ((f � h)jV�)� � (kjk�1(V�)\h(A0))� = 0, we have

(fjk�1(V�)\h(A0))� = 0 : �1(k
�1(V�) \ h(A0); x0) ! �1(Y; y0). Thus we

know that �1 � cat fh(A0) � �1 � cat (f � h)A0.

In Theorem 2.13, taking f = 1X : X ! X and applying Corollary

2.10, we have the following corollary.

Corollary 2.14. Let h : X 0 ! X be a homotopy equivalence, A0

a subset of X 0 and h(A0) = A. Then �1 � catX0A
0 = �1 � catXA. In

particular, �1 � cat X
0 = �1 � cat X.
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