• Title/Summary/Keyword: ${\pi}$-interactions

Search Result 122, Processing Time 0.023 seconds

PMO Theory of Orbital Interactions (Part 7). $\sigma-\pi$ Interactions

  • Kong, Byung-Hoo;Lee, Byung-Choon;Lee, Ik-Choon;Yang, Ki-Yull
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.5
    • /
    • pp.277-279
    • /
    • 1985
  • Orbital interactions of the types, ${\sigma}-{\pi},\;{\sigma}^*-{\pi},\;{\sigma}-{\pi}^*\;and\;{\sigma}^*-{\pi}^*$ are investigated for the rotamers of ${\alpha}$-X-acetones (X = F and Cl) using STO-3G method of calculation. It was found that the interactions are possible only in gauche forms, and the ${\sigma}^*-{\pi}^*$ interactions are in general greater than the $\sigma-\pi$ interactions due to the greater overlap, in spite of the greater energy gap involved; the greater ${\sigma}^*-{\pi}^*$ interaction causes greater lowering of ${\pi}^*$ level relative to the lowering of ${\sigma}$ in the ${\sigma}-{\pi}$ interaction so that both ${\sigma}-{\pi}^*$ and $n-{\pi}^*$ interactions are enhanced in the gauche forms. The extra stability of the gauche form and the red shift in the $n-{\pi}^*$ transition are thus found to be natural corollaries of the greater ${\sigma}^*-{\pi}^*$ interaction in the gauche forms.

Assessment of the Performance of B2PLYP-D for Describing Intramolecular π-π and σ-π Interactions

  • Choi, Tae-Hoon;Han, Young-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4195-4198
    • /
    • 2011
  • Intramolecular ${\pi}-{\pi}$ and ${\sigma}-{\pi}$ interactions are omnipresent for numerous energetic and structural phenomena in nature, and the exact description of these nonbonding interactions plays an important role in the accurate prediction of the three-dimensional structures for numerous interesting molecular systems such as protein folding and polymer shaping. We have selected two prototype molecular systems for benchmarking calculations of intramolecular ${\pi}-{\pi}$ and ${\sigma}-{\pi}$ interactions. Accurately describing conformational energy of such systems requires highly elaborate but very expensive ab initio methods such as coupled cluster singles, doubles, and (triples) (CCSD(T)). Our calculations reveal a double hybrid density functional incorporating dispersion correction (B2PLYP-D) that agrees excellently with the CCSD(T) results, indicating that B2PLYP-D can serve as a practical method of choice.

C-H···π and C-H···O Interactions in Coumarin 6 : 3-(2-benzothiazolyl)-7-(diethylamino)-coumarin

  • Li, Xiaochuan;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.22 no.2
    • /
    • pp.83-87
    • /
    • 2010
  • Crystal structure of coumarin 6 has been solved by X-ray diffraction. The crystals are triclinic, space group P-1, with a=8.823(2) ${\AA}$, b=8.898(2) ${\AA}$, c=11.025(9) ${\AA}$, ${\alpha}$=86.41(3)$^{\circ}$, ${\beta}$=85.39(3)$^{\circ}$, ${\gamma}$=76.23(3)$^{\circ}$, Mr=350.42, V=837.1(3) ${\AA}^3$, Z=2 and R=0.0516. The molecules are packed parallel to each other by weaker ${\pi}{\cdots}{\pi}$ and C-H${\cdots}{\pi}$ interactions. The detailed geometry of C-H${\cdots}{\pi}$ interactions were discussed. The hydrogen bonds and non-traditional C-H${\cdots}O$ interactions join the no-parallel molecules together. All the molecules packed wall-like with the molecular brick.

Theoretical Study on Interactions between N-Butylpyridinium Nitrate and Thiophenic Compounds

  • Lu, Renqing;Liu, Dong;Wang, Shutao;Lu, Yukun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1814-1822
    • /
    • 2013
  • By using density functional theory calculations, we have performed a systemic study on the electronic structures and topological properties of interactions between N-butylpyridinium nitrate ($[BPY]^+[NO_3]^-$) and thiophene (TS), benzothiophene (BT), dibenzothiophene (DBT), naphthalene (NAP). The most stable structure of $[BPY]^+[NO_3]^-$ ion pair indicates that hydrogen bonding interactions between oxygen atoms on $[NO_3]^-$ anion and C2-H2 on pyridinium ring play a dominating role in the formation of ion pair. The occurrence of hydrogen bonding, ${\pi}{\cdots}$H-C, and ${\pi}{\cdots}{\pi}$ interactions between $[BPY]^+[NO_3]^-$ and TS, BT, DBT, NAP has been corroborated at the molecular level. But hydrogen bonding and ${\pi}{\cdots}{\pi}$ interactions between $[BPY]^+[NO_3]^-$ and NAP are weak in terms of structural properties and NBO, AIM analyses. DBT is prior to adsorption on N-butylpyridinium nitrate ionic liquid.

A Quantitative Analysis of $\pi$-Nobonded and Through-Bond Interactions in n-Butane, n-Buthyl Radical and Tetramethylene Diradical$^1$

  • Lee Ikchoon;Cheun Young Gu
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.1
    • /
    • pp.1-4
    • /
    • 1982
  • A quantitative treatment of ${\pi}$-nonbonded and $n-{\sigma}^{\ast}$ interactions and through-bond coupling effect was attempted using n-butane, n-butyl radical, and tetramethylene diradical. Results of STO-3G level calculations showed that: (1) conformational preferences can be predicted quantitatively based solely on the additive effect of ${\pi}$-nonbonded and $n-{\sigma}^{\ast}$ interactions, the predominant effect being the ${\pi}$-nonbonded interactions, (2) $(n-{\sigma}^{\ast})_{anti}$ is destabilizing whereas $(n-{\sigma}^{\ast})_{syn}$ is weakly stabilizing, which are contrary to what we expect from the normal $n-{\sigma}^{\ast}$ interaction, (3) througb-bond coupling of the two radical lobes is destabilizing for the triplet but stabilizing for the singlet tetramethylene diradical.

A Study on the Atomic and Electronic Structures of DNA-nucleobases-adsorbed Graphene Through First-principles LCAO Method (제일원리 LCAO 방법을 이용한 DNA Nucleobase 흡착된 그라핀의 원자 및 전자구조 연구)

  • Lee, Eun-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.510-514
    • /
    • 2011
  • Based on first-principles LCAO method, we study the electronic and atomic structures of DNA nucleobases adenine (A), thymine (T), guanine (G), and cytosine (C) adsorbed on graphene surfaces. The ${\pi}-{\pi}$ stacking interactions between graphene and nucleobases lead to the bilayer geometries similar to the Bernal stacked graphite. Through the density of states and charge density analyses, it is found that nucleobases are physisorbed on graphene by dispersive interactions with negligible charge exchange. Our calculations reproduce the atomic structures obtained in previous plane wave calculations accurately with much less computation, and well describe the delocalized ${\pi}-{\pi}$ interactions in graphene-nucleobases system, indicating that the LCAO method is very efficient for investigating graphene-bio systems.

Molecular Design for the Formation of Two-dimensional Molecular Networks: STM Study of ${\gamma}$-phenylalanine on Au(111)

  • Jeon, A-Ram;Youn, Young-Sang;Lee, Hee-Seung;Kim, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.205-205
    • /
    • 2011
  • The self-assembly of ${\gamma}$-phenylalanine on Au(111) at 150 K was investigated using scanning tunneling microscopy (STM). Phenylalanine can potentially form two-dimensional (2D) molecular networks through hydrogen bonding (through the carboxyl and amino groups) and ${\pi}-{\pi}$ stacking interactions (via aromatic rings). We found that ${\gamma}$-phenylalanine molecules self-assembled on Au(111) surfaces into well-ordered structures such as ring-shaped clusters (at low and intermediate coverages) and 2D molecular domains (intermediate and monolayer coverages), whereas ${\alpha}$-phenylalanine molecules formed less-ordered structure on Au(111). The self-assembly of ${\gamma}$- but not ${\alpha}$-phenylalanine may be related to the flexibility of the carboxyl and amino groups in the molecule. Moreover, as expected, the 2D molecular network of ${\gamma}$-phenylalanine on Au(111) was mediated by a combination of hydrogen bonding and ${\pi}-{\pi}$ stacking interactions.

  • PDF

PMO Theory of Orbital Interaction (Ⅴ). ${\pi}$-${\pi}$ and ${\pi}^{\ast}$-${\pi}^{\ast}$ Orbital Interactions (궤도간 상호작용의 PMO 이론 (제5보). ${\pi}$-${\pi}$${\pi}^{\ast}$-${\pi}^{\ast}$ 궤도간 상호작용)

  • Ik Choon Lee;Ki Yull Yang;Nan Pyo Lee;Wang Ki Kim
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.23-30
    • /
    • 1985
  • PMO expressions for ${\pi}^{\ast}$-${\pi}^{\ast}$ orbital interaction have been derived. Important differences between ${\pi}$-${\pi}$ and ${\pi}^{\ast}$-${\pi}^{\ast}$ interactions predicted by PMO expressions are : (ⅰ) energy splitting in ${\pi}^{\ast}$-${\pi}^{\ast}$ interaction will be greater than that in ${\pi}$-${\pi}$ interaction, (ⅱ) energy change due to interaction will be more destabilizing in ${\pi}^{\ast}$-${\pi}^{\ast}$ than in ${\pi}$-${\pi}$ interaction. These predictions were borne out in experimental data and in results of MO theoretical computations. It was pointed out that both STeO-3G and INDO-LCBO methods underestimate ${\pi}^{\ast}$-${\pi}^{\ast}$ orbital interaction and in order to estimate properly with MO theoretical calculation, use of split valence basis set is required.

  • PDF

Theoretical Studies on Orbital Interactions and Conformation of ${\alpha}$-Substituted Acetones (${\alpha}$-치환 아세톤의 궤도간 상호작용과 형태에 관한 이론적 연구)

  • Ikchoon Lee;Kiyull Yang;Wang Ki Kim;Byung Hoo Kong;Byung Choon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.9-18
    • /
    • 1986
  • MNDO and STO-3G calculations were performed to determine relative stabilities of rotamers for ${\alpha}$-substituted acetones, $CH_2XCOCH_3$, X = F, Cl, OH, SH, and $NH_2$. It was found that rotamers corresponding to gauche forms are preferred for all the ${\alpha}$-substituents except for X = F and NH$_2$, for which the cis forms were the preferred ones. The stability of gauche form was dictated by the stabilizing two-orbital-two-electron interaction ${\sigma}_{cx}$-${\pi}_{co}^*$, operating uniquely in the gauche form due to the substantial vicinal overlap and energy gap narrowing between ${\sigma}_{cx}$ and ${\pi}_{co}^*$ orbitals. The energy gap narrowing was caused by the lowering of ${\pi}_{co}^*$ level due to the hyperconjugative ${\sigma}_{cx}^*$-${\pi}_{co}^*$ interactions; the red shift in the n-${\pi}^*$ transition was another effect of the relatively large ${\sigma}_{cx}^*$-${\pi}_{co}^*$ splitting. Various ${\sigma}-{\pi}$ interactions in the gauche form were found to be stronger in the third-row hetero atom system, X = Cl and SH. Interactions between nonbonding orbital on N, $n_N$ and vicinal C-C ${\sigma}$ bond were shown to be stronger in the trans than in the cis orientation.

  • PDF