• Title/Summary/Keyword: ${\mu}$ receptor

Search Result 836, Processing Time 0.032 seconds

Effects of Cholecystokinin Octapeptide on Neuronal Activities in the Rat Nucleus Tractus Solitarius

  • Rhim, Hye-Whon;Park, Chan-Woong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.4
    • /
    • pp.275-281
    • /
    • 2000
  • Cholecystokinin (CCK) is a gastrointestinal hormone which plays an important role in satiety and gastric motility. It is also widely distributed throughout the central nervous system, where it appears to be involved in the central control of anxiety, feeding behavior and nociception. Two distinct CCK receptor types, $CCK_A$ and $CCK_B,$ have been found in the brain. Both CCK receptors coexist in the rat nucleus tractus solitarius (NTS), which is the primary center for the coordination of peripheral and central activities related to gastrointestinal, cardiovascular and respiratory functions. In order to study ionic actions of CCK on each type of receptor, we investigated the effects of CCK-8S on neurons located in the NTS of the rat using whole-cell patch-clamp recordings in brainstem slices. Application of CCK-8S, under current clamp, produced a membrane depolarization accompanied by action potential firing. This CCK-evoked excitation was dose-dependent $(10\;nM{\sim}10\;{\mu}M)$ and observed in more than 60% of NTS neurons. Under voltage clamp conditions, CCK-8S induced an inward current with a notably increased spontaneous excitatory synaptic activity. However, CCK-8S did not significantly change the amplitude of pharmacologically isolated and evoked EPSP(C)s. Using selective $CCK_A$ and $CCK_B$ receptor antagonists, we observed two different effects of CCK-8S, which suggest $CCK_A$ receptor-mediated inhibitory and $CCK_B$ receptor-mediated excitatory effects in the NTS. These results may help to explain the ability of CCK to modulate gastrointestinal and other reflex systems in the NTS.

  • PDF

Epidermal Growth Factor Receptors Increase in Rabbit Embryonal Implantation (배아착상에 대한 Epidermal Growth Factor 수용체의 동태)

  • Lee, Yu-Il
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.18 no.2
    • /
    • pp.181-187
    • /
    • 1991
  • Epidermal growth facter(EGF)는 내열성이 강하고 분자량이 6045 dalton인 단쇄상의 polypeptide로써, Cohen에 의해 생쥐의 악하선에서 처음 발견된 이래, 여러학자들에 의해 많은 연구가 되어왔다. 인체의 EGF는 urogastrone이라고도 불리우며, 인체의 소변에서 처음 검출되었고 분자구조 및 생리작용이 생쥐의 EGF와 매우 유사한 것으로 판명되었다. EGF의 자세한 작용기전은 확실히 규명되어있지는 않지만 세포의 증식과 분화를 촉진시키며 위산의 분비를 억제시킨다고 알려져 있다. 또한 EGF receptor는 분자량이 170,000${\sim}$180,000dalton인 세포표면의 polypeptide로써 인체, 쥐, 닭, 소 등의 세포막조직에 특이하게 결합되어 있다. 최근 수년동안 몇몇 학자들에 의해 EGF가 배아와 태아 및 태반의 성장을 촉진시키고 chorionic gonadotrophin과 placental lactogen의 분비를 증진하는데 기여할 것이라고 가정되어 왔다. 그러나 아직까지 배아착상에 대한 EGF의 작용여부에 관해서는 발표된 문헌이 없어 저자는 radioreceptor assay를 이용하여 EGF receptor binding과 토끼의 배아착상과의 관계를 규명하고자 임신경과에 따른 착상부위와 비착상부위의 자궁 및 태아측 태반과 모체측 태반을 분리취득하고 receptor binding assay를 시행하여 다음과 같은 결론을 얻었다. 1. 전임신군과 비임신군의 자궁조직의 membrane fraction으로부터 specific한 EGF receptor binding이 관찰되었다. 2. 착상전 임신 3일에 자궁조직의 EGF receptor수는 4.72 +0.16($10\;mol/{\mu}g$)로 비임신시보다 의의있게 증가되어 있었고(p<0.01), 착상시기인 임신 7일에는 착상된 부위에서 20.33+6.58로 훨씬 더 높은 측정치를 나타내었다(p<0.05). 3. 착상이후 가장 먼저 취득된 임신 14일의 태아측 태반은 모체측 태반의 1.39+0.49에 비해 훨씬 높은 11.94+1.97의 EGF receptor 측정치를 보였다 (p<0.01). 4. 이상의 소견들로 보아 EGF가 토끼의 배아착상에 밀접한 관련이 있을 것으로 추측되며, 이러한 착상전후의 EGF의 작용은 태아측으로부터 일 것으로 예상된다.

  • PDF

Pharmacological characteristics of higenamine on adrenergic β-receptors (아드레날린성 β-수용체에 대한 higemamine의 약리학적 특성)

  • Yun, Hyo-in;Chang, Ki-churl;Lee, Chang-eop
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.1
    • /
    • pp.41-49
    • /
    • 1992
  • Higenamine is an Aconiti tuber derived compound whose chemical structure is 1-(4'-hydroxybenzyl)-6, 7-dihydroxy-1, 2, 3, 4-tetrahydroisoquinoline containing catechol ring and tetrahydroisoquinoline nucleus in its own structure, both of which are well known to have agonistic effects on adrenergic receptors. Using guinea-pig atria(rich in ${\beta}_1$-receptor) and treachea(rich in ${\beta}_2$-receptor), we studied pharmacological actions of higenamine on these organs with special interest of its relevancy of ${\beta}$-receptor selectivity. In order to further clarify its pharmacological characteristics, the influncences of pretreatment of reserpine or cocaine were also investigated. The results were summarized as follows : 1. Higenamine had remarkable chronotropic, inotropic and bronchodilator effects in guinea-pig spontaneously beating right atria, left atria and trachea, in dose-dependent manners. 2. All of above actions were blocked competitively by propranolol, which shows nonselectivity of higenamine on ${\beta}$-receptor. $pA_2$ values of propranolol against higenamine were 7.93, 7.76 and 8.46 in guinea-pig right atria, left atria and treachea, respectively. 3. Reserpine pretreatment(5mg/kg, ip, 24h) did not show my decrease in pharmacological actions of higenamine, which suggests higenamine has direct action on ${\beta}$-receptor not via catecholamine release. 4. Cocaine pretreatment$(1{\mu}M)$ had no influence on pharmacological actions of higenamine in contrast with nor epinephrine, which suggests there is no neuronal uptake mechanism of higenamine in the studied organ preparations.

  • PDF

Effect of Growth Hormone and Androgen on Vitellogenin and Estrogen Receptor Gene Expression in the Japanese eel, Anguilla japonica (뱀장어 Vitellogenin과 Estrogen 수용체 유전자 발현에 대한 성장호르몬 및 웅성호르몬의 영향)

  • Kwon, Hyuk-Chu;Choi, Seong-Hee;Kim, Eun-Hee;Kwon, Joon-Yeong
    • Development and Reproduction
    • /
    • v.10 no.2
    • /
    • pp.97-103
    • /
    • 2006
  • Vitellogenin(Vg) is a sex specific serum protein present in sexually maturing female blood of oviparous vertebrates. Estrogen($E_2$) is a main inducer of hepatic Vg synthesis. We investigated the effects of androgen and growth hormone(GH) on regulation of Vg and estrogen receptor(ER) genes in Japanese eel. Immature eels($200{\sim}250\;g$) were given a single injection of $E_2(5{\sim}5,000\;{\mu}g/kg\;bw)$ alone, or in combination with eel recombinant GH(eGH, $1{\sim}10\;{\mu}g/kg$) or methyltestosterone(MT, $1{\sim}5\;mg/kg$) and sacrificed 10 days after the hormone treatments. Expression levels of ER and Vg genes from the liver were determined by means of reverse transcription and polymerase chain reaction(RT-PCR). Administration of $E_2$ stimulated Vg gene expression in a dose dependent manner. Levels of Vg mRNA after the injection of $E_2(500\;{\mu}g/kg)$ with MT(5mg/kg) or eGH($10\;{\mu}g/kg$) were much higher than in that of $E_2$ alone($500\;{\mu}g/kg$). Whereas, injection of either vehicle, eGH ($10\;{\mu}g/kg$) or MT(5mg/kg) alone did not induce the expression of Vg gene in the liver. ER mRNA was detected from the fish treated with vehicle alone. $E_2$ injection($5{\sim}500\;{\mu}g/kg\;bw$) increased this ER expression but dose dependent response was not clear. Addition of MT(5mg/kg) or eGH($10\;{\mu}g/kg$) did not affect $E_2-stimulated$ ER mRNA expression. This study confirms the necessity of $E_2$ as the primary factor for Vg gene expression and requirement of additional hormones such as MT or GH for the full expression of Vg mRNA, and suggests that the additive effect of MT or GH on Vg gene expression would be mediated by some unknown factors other than ER.

  • PDF

CLASSIFICATION OF MUSCARINIC RECEPTOR SUBTYPES BY OXOMEMAZINE

  • Lee, Shin-Woong-;Woo, Chang-Woo;Kim, Jeung-Gu-
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.290-290
    • /
    • 1994
  • The binding characteristic of oxomemazine to muscarinic receptor in the cerebrum, heart, and ileum were compared to those of pirenzepine to investigate whether oxomemazine could classify the muscarinic receptor subtypes. 〔$^3$H〕Quinucl idinyl benzilate(QNB) identified a single class of muscarinic receptors with apparent K$\sub$D/ value of about 60 pM in three tissues. Analysis of the pirenzepine inhibition curve of 〔$^3$H〕QNB binding to cerebral microsome indicated the presence of two receptor subtypes with high (Ki=16 nM, M$_1$-receptor) and low (Ki=400 nM, M$_2$-receptor) affinity for pirenzepine. Oxomemazine also identified two receptor subtypes with high (Ki=84 nM, On-receptor) and low (Ki=1 4 ${\mu}$M, O$\sub$L/-receptor) affinity in rat cerebral microsome, The percentage population of the M$_1$-and M$_2$-receptors to the total receptors were 61 : 39, and those of the O$\^$H/- and O$\sub$L/-receptors 39 : 61, respectively, However, the Hill coefficients of these two drugs for the inhibition of 〔$^3$H〕QNB binding to the heart and ileum were close to unity which indicated that these drugs bound to a uniform population of receptors in these two tissues. The Ki values for the low affinity sites of pirenzepine and oxomemazine in the cerebrum were similar to those of these drugs in the heart ileum. Both pirenzepine and oxomemazine increased K$\sub$D/ value for 〔$^3$H〕QNB without affecting the binding sites concentration and Hill coefficient for the 〔$^3$H〕QNB binding. Oxomemazine had a 10-fold lower affinity at Ma-receptors than at M$_1$-receptors, and pirenzepine a 8-fold lower affinity at O$\sub$L/-receptors than OH-receptors. Analysis of the shal low competition curves of oxomemazine for the H$_1$ receptors and pirenzepine for the O$\sub$L/-receptors yielded that 69% of the M$_1$-receptors were of the O$\sub$H/-receptors and the remaining 31% of the O$\sub$L/-receptors, and that 29% of the O$\sub$L/-receptors were of the M$_1$-receptors and 71% of the M$_2$-receptors. However, M$_2$ for oxomemazine and O$\sub$H/ for pirenzepine were composed of a uniform population. These results suggest that oxomemazine could discriminatethe muscarnic receptor subtypes and may subclassify the M$_1$-receptors into two subtypes.

  • PDF

Characterization of angiotensin II antagonism displayed by KR-31081, a novel nonpeptide AT1 receptor antagonist (안지오텐신 수용체 길항제 KR-31081의 특성에 관한 연구)

  • Lee, Sung-Hou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2997-3003
    • /
    • 2009
  • The pharmacological profile of KR-31081, a nonpeptide $AT_1$ selective angiotensin receptor antagonist, was investigated by receptor binding studies, functional in vitro assays with rabbit aorta. KR-31081 inhibited the specific binding of $[^{125}I]\;[Sar^1,\;Ile^8]$-angiotensin II to human recombinant $AT_1$ receptor with an 8.6-fold greater potency than losartan ($IC_{50}$: 1.43 and 12.3 nM, respectively), but it did not inhibit the binding of [$^{125}I$] CGP 42112A to human recombinant $AT_2$ receptor ($IC_{50}$: higher than $10{\mu}M$ for both). The Hill coefficient for the competition curve of KR-31081 against $AT_1$ receptor was not significantly different from unity (0.99). Scatchard analysis showed that KR-31081 interacted with human recombinant $AT_1$ receptor in a competitive manner, as with losartan. In functional studies with rabbit aorta, KR-31081 competitively inhibited the contractile response to angiotensin II ($pK_B$ values: 8.66) with 20-70% decrease in the maximum contractile responses, unlike losartan that showed competitive antagonism without any change in the maximum contractile responses to angiotensin II ($pA_2$ values: 7.59). These results suggest that KR-31081 is a highly potent $AT_1$ selective angiotensin II receptor antagonist with a mode of insurmountable antagonism to be developed as the exploratory potential of this compound.

Influence of Glibenclamide on Catecholamine Secretion in the Isolated Rat Adrenal Gland

  • No, Hae-Jeong;Woo, Seong-Chang;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • v.15 no.2
    • /
    • pp.108-117
    • /
    • 2007
  • The aim of the present study was to investigate the effect of glibenclamide, a hypoglycemic sulfonylurea, which selectively blocks ATP-sensitive K$^+$ channels, on secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane depolarization from the isolated perfused rat adrenal glands. The perfusion of glibenclamide (1.0 mM) into an adrenal vein for 90 min produced time-dependently enhanced the CA secretory responses evoked by ACh (5.32 mM), high K$^+$ (a direct membrane depolarizer, 56 mM), DMPP (a selective neuronal nicotinic receptor agonist, 100 ${\mu}$M for 2 min), McN-A-343 (a selective muscarinic M1 receptor agonist, 100 ${\mu}$M for 2 min), Bay-K-8644 (an activator of L-type dihydropyridine Ca$^{2+}$ channels, 10 ${\mu}$M for 4 min) and cyclopiazonic acid (an activator of cytoplasmic Ca$^{2+}$-ATPase, 10 ${\mu}$M for 4 min). In adrenal glands simultaneously preloaded with glibenclamide (1.0 mM) and nicorandil (a selective opener of ATP-sensitive K$^+$ channels, 1.0 mM), the CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were recovered to the considerable extent of the control release in comparison with that of glibenclamide-treatment only. Taken together, the present study demonstrates that glibenclamide enhances the adrenal CA secretion in response to stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization from the isolated perfused rat adrenal glands. It seems that this facilitatory effect of glibenclamide may be mediated by enhancement of both Ca$^{2+}$ influx and the Ca$^{2+}$ release from intracellular store through the blockade of K$_{ATP}$ channels in the rat adrenomedullary chromaffin cells. These results suggest that glibenclamide-sensitive K$_{ATP}$ channels may play a regulatory role in the rat adrenomedullary CA secretion.

Inhibitory Modulation of 5-Hydroxytryptamine on Corticostriatal Synaptic Transmission in Rat Brain Slice

  • Choi, Se-Joon;Chung, Won-Soon;Kim, Ki-Jung;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.295-301
    • /
    • 2003
  • Striatum plays a crucial role in the movement control and habitual learning. It receives an information from wide area of cerebral cortex as well as an extensive serotonergic (5-hydroxytryptamine, 5-HT) input from raphe nuclei. In the present study, the effects of 5-HT to modulate synaptic transmission were studied in the rat corticostriatal brain slice using in vitro extracellular recording technique. Synaptic responses were evoked by stimulation of cortical glutamatergic inputs on the corpus callosum and recorded in the dorsal striatum. 5-HT reversibly inhibited coticostriatal glutamatergic synaptic transmission in a dose-dependent fashion (5, 10, 50, and $10{\mu}M$), maximally reducing in the corticostriatal population spike (PS) amplitude to $40.1{\pm}5.0$% at a concentration of $50{\mu}M$ 5-HT. PSs mediated by non-NMDA glutamate receptors, which were isolated by bath application of the NMDA receptor antagonist, d,l-2-amino-5-phospohonovaleric acid (AP-V), were decreased by application of $50{\mu}M$ 5-HT. However, PSs mediated by NMDA receptors, that were activated by application of zero $Mg^{2+}$ aCSF, were not significantly affected by $50{\mu}M$ 5-HT. To test whether the corticostriatal synaptic inhibitions by 5-HT might involve a change in the probability of neurotransmitter release from presynaptic nerve terminals, we measured the paired-pulse ratio (PPR) evoked by 2 identical pulses (50 ms interpulse interval), and found that PPR was increased ($33.4{\pm}5.2$%) by 5-HT, reflecting decreased neurotransmitter releasing probability. These results suggest that 5-HT may decrease neurotransmitter release probability of glutamatergic corticostriatal synapse and may be able to selectively decrease non-NMDA glutamate receptor-mediated synaptic transmission.

The activation of α2-adrenergic receptor in the spinal cord lowers sepsis-induced mortality

  • Kim, Sung-Su;Park, Soo-Hyun;Lee, Jae-Ryung;Jung, Jun-Sub;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.5
    • /
    • pp.495-507
    • /
    • 2017
  • The effect of clonidine administered intrathecally (i.t.) on the mortality and the blood glucose level induced by sepsis was examined in mice. To produce sepsis, the mixture of D-galactosamine (GaLN; 0.6 g/10 ml)/lipopolysaccharide (LPS; $27{\mu}g/27{\mu}l$) was treated intraperitoneally (i.p.). The i.t. pretreatment with clonidine ($5{\mu}g/5{\mu}l$) increased the blood glucose level and attenuated mortality induced by sepsis in a dose-dependent manner. The i.t. post-treatment with clonidine up to 3 h caused an elevation of the blood glucose level and protected sepsis-induced mortality, whereas clonidine post-treated at 6, 9, or 12 h did not affect. The pre-treatment with oral D-glucose for 30 min prior to i.t. post-treatment (6 h) with clonidine did not rescue sepsis-induced mortality. In addition, i.t. pretreatment with pertussis toxin (PTX) reduced clonidine-induced protection against mortality and clonidine-induced hyperglycemia, suggesting that protective effect against sepsis-induced mortality seems to be mediated via activating PTX-sensitive G-proteins in the spinal cord. Moreover, pretreatment with clonidine attenuated the plasma tumor necrosis factor ${\alpha}$ ($TNF-{\alpha}$) induced by sepsis. Clonidine administered i.t. or i.p. increased $p-AMPK{\alpha}1$ and $p-AMPK{\alpha}2$, but decreased p-Tyk2 and p-mTOR levels in both control and sepsis groups, suggesting that the up-regulations of $p-AMPK{\alpha}1$ and $p-AMPK{\alpha}2$, or down-regulations of p-mTOR and p-Tyk2 may play critical roles for the protective effect of clonidine against sepsis-induced mortality.