• Title/Summary/Keyword: ${\lambda}$-semilattice

Search Result 1, Processing Time 0.013 seconds

Near λ-lattices

  • Chajda, Ivan;Kolarik, M.
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.2
    • /
    • pp.283-294
    • /
    • 2007
  • By a near ${\lambda}$-lattice is meant an upper ${\lambda}$-semilattice where is defined a parti binary operation $x{\Lambda}y$ with respect to the induced order whenever $x$, $y$ has a common lower bound. Alternatively, a near ${\lambda}$-lattice can be described as an algebra with one ternary operation satisfying nine simple conditions. Hence, the class of near ${\lambda}$-lattices is a quasivariety. A ${\lambda}$-semilattice $\mathcal{A}=(A;{\vee})$ is said to have sectional (antitone) involutions if for each $a{\in}A$ there exists an (antitone) involution on [$a$, 1], where 1 is the greatest element of $\mathcal{A}$. If this antitone involution is a complementation, $\mathcal{A}$ is called an ortho ${\lambda}$-semilattice. We characterize these near ${\lambda}$-lattices by certain identities.

  • PDF