• Title/Summary/Keyword: ${\kappa}B{\alpha}$

Search Result 868, Processing Time 0.025 seconds

Effect of Boswellia serrata Extracts on Degenerative Osteoarthritis in vitro and in vivo Models (보스웰리아 추출물의 골관절염 억제 효과 연구)

  • Nam, Da-Eun;Kim, Ok Kyung;Shim, Tae Jin;Kim, Ji Hoon;Lee, Jeongmin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.5
    • /
    • pp.631-640
    • /
    • 2014
  • The inhibitory effects of Boswellia serrata (BW) extracts on degenerative osteoarthritis were investigated in primary-cultured rat cartilage cells and a monosodium-iodoacetate (MIA)-induced osteoarthritis rat model. To identify the protective effects of BW extract against $H_2O_2$ ($800{\mu}M$, 2 hr) in vitro, cell survival was measured by MTT assay. Cell survival after $H_2O_2$ treatment was elevated by BW extract at a concentration of $20{\mu}g/mL$. In addition, BW extract treatment significantly reduced and normalized the productions of pro-inflammatory factors, nuclear transcription factor ${\kappa}B$, cyclooxygenase-2, tumor necrosis factor-${\alpha}$, and interleukin-6 at a concentration of $20{\mu}g/mL$. Treatment of chondrocytes with BW extract significantly reduced 5-lipoxygenase activity and production of prostaglandin E2, especially at a concentration of $10{\sim}20{\mu}g/mL$. For the in vivo animal study, osteoarthritis was induced by intra-articular injection of MIA into knee joints of rats. Consumption of a diet containing BW extract (100 and 200 mg/kg) for 35 days significantly inhibited the development and severity of osteoarthritis in rats. To determine the genetic expression of arthritic factors in articular cartilage, real-time PCR was applied to measure matrix metalloproteinases (MMP-3, MMP-9, and MMP-13), collagen type I, collagen type II, and aggrecan, and BW extract had protective effects at a concentration of 200 mg/kg. In conclusion, BW extract was able to inhibit articular cartilage degeneration by preventing extracellular matrix degradation and chondrocyte injury. One can consider that BW extract may be a potential therapeutic treatment for degenerative osteoarthritis.

Anti-inflammatory Effect of Yongseollan on the LPS-activated RAW 264.7 Cells

  • Jo, Mi-Jeong;Lee, Byung-Wook;Eom, Dong-Myung;Lee, Jong-Rok;Hwangbo, Min;Jee, Seon-Young;Kim, Sang-Chan
    • Herbal Formula Science
    • /
    • v.15 no.1
    • /
    • pp.175-183
    • /
    • 2007
  • This study was conducted to evaluate the inhibitory effects of Yongseollan(YSL) on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-activated RAW264.7 cells. YSL is tropical plant originating from Mexico. The biological activity of this plant is not yet evaluated systematically. The aim of the present work is to investigate a potential anti-inflammatory activity of YSL. The RAW264.7 cells were cultured in D MEM/F12 medium for 24 hrs. After serum starvation, cells were treated with YSL for 1 hr, followed by stimulating NO production with a LPS. We found that YSL has an inhibitory effect on the production of NO, iNOS expression and $phospho-I{\kappa}B$ expression. YSL also inhibited tumor necrosis factor $(TNF)-{\alpha}$, interleukin (IL)-6, and $IL-1{\beta}$. Moreover, YSL inhibited cyclooxygenase (COX)-2 expression and prostanglandin E2 (PGE2). These findings showed that YSL could have some anti-inflammatory effects which might play a role in therapy in Gram-negative bacterial infections.

  • PDF

Anti-inflammatory and anti-oxidative effects of 3-(naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride on β-amyloid-induced microglial activation

  • Yang, Seung-Ju;Kim, Jiae;Lee, Sang Eun;Ahn, Jee-Yin;Choi, Soo Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.50 no.12
    • /
    • pp.634-639
    • /
    • 2017
  • We aimed to assess the anti-inflammatory and antioxidative properties of KHG26792, a novel azetidine derivative, in amyloid ${\beta}$ ($A{\beta}$)-treated primary microglial cells. KHG26792 attenuated the $A{\beta}-induced$ production of inflammatory mediators such as IL-6, $IL-1{\beta}$, $TNF-{\alpha}$, and nitric oxide. The levels of protein oxidation, lipid peroxidation, ROS, and NADHP oxidase enhanced by $A{\beta}$ were also downregulated by KHG26792 treatment. The effects of KHG26792 against the $A{\beta}-induced$ increases in inflammatory cytokine levels and oxidative stress were achieved by increasing the phosphorylation of $Akt/GSK-3{\beta}$ signaling and by decreasing the $A{\beta}-induced$ translocation of $NF-{\kappa}B$. Our results provide novel insights into the use of KHG26792 as a potential agent against $A{\beta}$ toxicity, including its role in the reduction of inflammation and oxidative stress. Nevertheless, further investigations of cellular signaling are required to clarify the in vivo effects of KHG26792 against $A{\beta}-induced$ toxicity.

Anti-inflammatory Effect of Isaria sinclairii Glycosaminoglycan in an Adjuvant-treated Arthritis Rat Model

  • Ahn, Mi Young;Jee, Sang Duck;Hwang, Jae Sam;Yun, Eun Young;Ahn, Kwang Seok;Kim, Yeong Shik
    • Toxicological Research
    • /
    • v.29 no.3
    • /
    • pp.195-201
    • /
    • 2013
  • The anti-inflammatory effects of glycosaminoglycan (GAG) derived from Isaria sinclairii (IS) and of IS extracts were investigated in a complete Freund's adjuvant (CFA)-treated chronic arthritis rat model. Groups of rats were treated orally with 30 mg/kg one of the following: [1] saline control, extracts of [2] water-IS, [3] methanol-IS, [4] butanol-IS, [5] ethyl acetate-IS, or [6] Indomethacin(R) as the positive control for a period of two weeks. The anti-paw edema effects of the individual extracts were in the following order: water-IS ex. > methanol ex. > butanol ex. > ethyl acetate ex. The water/methanol extract from I. sinclairii remarkably inhibited UV-mediated upregulation of NF-${\kappa}B$ activity in transfected HaCaT cells. GAG as a water-soluble alcohol precipitated fraction also produced a noticeable anti-edema effect. This GAG also inhibited the pro-inflammatory cytokine levels of prostaglandin $E_2$-stimulated lipopolysaccharide in LAW 264.7 cells, cytokine TNF-${\alpha}$ production in splenocytes, and atherogenesis cytokine levels of vascular endothelial growth factor (VEGF) production in HUVEC cells in a dose-dependent manner. In the histological analysis, the LV dorsal root ganglion, including the articular cartilage, and linked to the paw-treated IS GAG, was repaired against CFA-induced cartilage destruction. Combined treatment with Indomethacin(R) (5 mg/kg) and IS GAG (10 mg/kg) also more effectively inhibited CFA-induced paw edema at 3 hr, 24 hr, and 48 hr to levels comparable to the anti-inflammatory drug, indomethacin. Thus, the IS GAG described here holds great promise as an anti-inflammatory drug in the future.

Localization of Klotho in cisplatin induced acute kidney failure (Cisplatin 유도 급성신부전에서 Klotho 단백질의 발현)

  • Park, So-Ra;Kim, Tae-Won;Kim, Young-Jung;Kim, Hyun-Tae;Ryu, Si-Yun;Jung, Ju-Young
    • Korean Journal of Veterinary Research
    • /
    • v.54 no.4
    • /
    • pp.225-231
    • /
    • 2014
  • Klotho deficiency is an early event in acute kidney injury (AKI) that exacerbates acute kidney damage. The present study explored the expression of Klotho and inflammation related factors in cisplatin-induced AKI. Rats (n = 18) were treated with cisplatin intraperitoneal injection (5 mg/kg) or left untreated as controls (n = 6), then sacrificed at 5 (n = 6) and 10 days (n = 6) treatment. Five days after cisplatin injection, the serum kidney enzymes and kidney cell apoptosis were significantly increased. Moreover, the expression of Klotho was decreased when compared to the control group, especially in the cortex and outer medulla regions. In contrast, inflammation related signals including nuclear factor kappa B, tumor necrosis factor-${\alpha}$, and tumor necrosis factor-like weak inducer of apoptosis were enhanced. However, 10 days after cisplatin injection, Klotho expression was enhanced upon both IHC and Western blot analysis, with slightly recovered renal function and decreased apoptosis. Furthermore, inflammation related signals expression was decreased relative to the 5 days group. Overall, this study confirmed the opposite expression patterns between Klotho and inflammation related signals and their localization in cisplatin-induced AKI kidney.

Effect of dietary legumes on bone-specific gene expression in ovariectomized rats

  • Park, Yongsoon;Moon, Hyoun-Jung;Paik, Doo-Jin;Kim, Deog-Yoon
    • Nutrition Research and Practice
    • /
    • v.7 no.3
    • /
    • pp.185-191
    • /
    • 2013
  • In previous studies, we found that the consumption of legumes decreased bone turnover in ovariectomized rats. The purpose of the present study is to determine whether the protective effects on bone mineral density (BMD) and the microarchitecture of a diet containing legumes are comparable. In addition, we aim to determine their protective actions in bones by studying bone specific gene expression. Forty-two Sprague-Dawley rats are being divided into six groups during the 12 week study: 1) rats that underwent sham operations (Sham), 2) ovariectomized rats fed an AIN-93M diet (OVX), 3) ovariectomized rats fed an AIN-93M diet with soybeans (OVX-S), 4) ovariectomized rats fed an AIN-93M diet with mung beans (OVX-M), 5) ovariectomized rats fed an AIN-93M diet with cowpeas (OVX-C), and 6) ovariectomized rats fed an AIN-93M diet with azuki beans (OVX-A). Consumption of legumes significantly increased BMD of the spine and femur and bone volume of the femur compared to the OVX. Serum calcium and phosphate ratio, osteocalcin, expression of osteoprotegerin (OPG), and the receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL) ratio increased significantly, while urinary excretion of calcium and deoxypyridinoline and expression of TNF-${\alpha}$ and IL-6 were significantly reduced in OVX rats fed legumes, compared to OVX rats that were not fed legumes. This study demonstrates that consumption of legumes has a beneficial effect on bone through modulation of OPG and RANKL expression in ovariectomized rats and that legume consumption can help compensate for an estrogen-deficiency by preventing bone loss induced by ovarian hormone deficiency.

Anti-inflammatory Activity of Extracts from Ultra-Fine Ground Saururus chinensis Leaves in Lipopolysaccharide-Stimulated Raw 264.7 Cells

  • Kim, Dong-Hee;Cho, Jun-Hyo;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.1
    • /
    • pp.37-43
    • /
    • 2016
  • Bioactive components of ultra-fine ground Saururus, the extraction yield increases when the leaves are ultra-fine ground. Comparison of normal-ground and ultra-fine ground Saururus chinensis leaves showed that the solid content and antiinflammatory activity of ultra-fine ground extracts was higher than that of normal-ground extracts. Lipopolysaccharide (LPS)-stimulated Raw 264.7 cells were treated with different concentrations of Saururus chinensis extract and the amount of nitric oxide (NO) was determined; LPS-treated cells produced 2 times more NO than cells that were not treated with LPS. Moreover, the NO production in cells treated with Saururus chinensis extract was inhibited in a concentration-dependent manner. Because the stimulant-induced NO production is regulated by the inducible nitric oxide synthase (iNOS), we measured the iNOS protein level to elucidate the mechanism by which the NO production was inhibited. We found that the amount of iNOS decreased dose-dependently. It was reduced by 53% at a Saururus chinensis extract concentration of $100{\mu}g/mL$. The protein expression of cyclooxygenase-2 (COX-2) in LPS-treated Raw 264.7 cells was inhibited by 31% at $100{\mu}g/mL$ of Saururus chinensis extract. Gel shift of the nuclear factor kappa B-DNA complex occurred in LPS-treated cells and the intensity of the band decreased gradually in a concentration-dependent manner. Ultra-fine ground Saururus chinensis extract had a concentration-dependent inhibitory effect on the production of prostaglandin $E_2$, tumor necrosis factor ${\alpha}$, interleukin $1{\beta}$ (IL-$1{\beta}$), IL-6, and IL-8 in LPS-treated Raw 264.7 cells, i.e., at $50{\mu}g/mL$ of Saururus chinensis extract, their levels were decreased by 53, 67, 52, 37, and 21% respectively.

Antiallergic Effects of Fermented Ixeris sonchifolia and Its Constituents in Mice

  • Trinh, Hien-Trung;Bae, Eun-Ah;Hyun, Yang-Jin;Jang, Yoon-Ah;Yun, Hyung-Kwon;Hong, Seong-Sig;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.217-223
    • /
    • 2010
  • To evaluate the antiallergic effect of fermented Ixeris sonchifolia (IS, family Compositae), we prepared IS kimchi, isolated lactic acid bacteria (LAB) from it, fermented IS with these LAB, and investigated their antiallergic effects. IS kimchi inhibited the passive cutaneous anaphylaxis (PCA) reaction induced by an IgE-antigen complex as well as the scratching behavior induced by compound 48/80 or histamine more potently than IS. When IS was fermented with LAB isolated from IS kimchi, its antiallergic effects was also increased. Of LAB used for fermentation, Lactobacillus brevis more potently increased the antiallergic effects. Its main constituents, chlorogenic acid and luteolin, potently inhibited the PCA reaction induced by the IgE-antigen complex as well as the pruritis induced by compound 48/80 or histamine. These constituents inhibited the expression of pro inflammatory and allergic cytokines, TNF-$\alpha$. and IL-4, and transcription factor NF-${\kappa}B$ activation induced by the IgE-antigen complex in RBL-2H3 cells, as well as the degranulation of RBL-2H3 cells induced by the IgE-antigen complex. Luteolin more potently inhibited these allergic reactions than chlorogenic acid. These findings suggest that the antiallergic effect of IS can be increased by LAB fermentation, and the fermented IS might improve allergic reactions such as pruritus, anaphylaxis, and inflammation.

Lipoteichoic Acid from Lactobacillus plantarum Inhibits the Expression of Platelet-Activating Factor Receptor Induced by Staphylococcus aureus Lipoteichoic Acid or Escherichia coli Lipopolysaccharide in Human Monocyte-Like Cells

  • Kim, Hangeun;Jung, Bong Jun;Jeong, Jihye;Chun, Honam;Chung, Dae Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1051-1058
    • /
    • 2014
  • Platelet-activating factor receptor (PAFR) plays an important role in bacterial infection and inflammation. We examined the effect of the bacterial cell wall components lipopolysaccharide (LPS) and lipoteichoic acid (LTA) from Lactobacillus plantarum (pLTA) and Staphylococcus aureus (aLTA) on PAFR expression in THP-1, a monocyte-like cell line. LPS and aLTA, but not pLTA, significantly increased PAFR expression, whereas priming with pLTA inhibited LPS-mediated or aLTA-mediated PAFR expression. Expression of Toll-like receptor (TLR) 2 and 4, and CD14 increased with LPS and aLTA treatments, but was inhibited by pLTA pretreatment. Neutralizing antibodies against TLR2, TLR4, and CD14 showed that these receptors were important in LPS-mediated or aLTA-mediated PAFR expression. PAFR expression is mainly regulated by the nuclear factor kappa B signaling pathway. Blocking PAF binding to PAFR using a PAFR inhibitor indicated that LPS-mediated or aLTA-mediated PAF expression affected TNF-${\alpha}$ production. In the mouse small intestine, pLTA inhibited PAFR, TLR2, and TLR4 expression that was induced by heat-labile toxin. Our data suggested that pLTA has an anti-inflammatory effect by inhibiting the expression of PAFR that was induced by pathogenic ligands.

Abalone Haliotis discus hannai Intestine Digests with Different Molecule Weights Inhibit MMP-2 and MMP-9 Expression in Human Fibrosarcoma Cells

  • Nguyen, Van-Tinh;Qian, Zhong-Ji;Jung, Won-Kyo
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.2
    • /
    • pp.137-143
    • /
    • 2012
  • The abalone Haliotis discus hannai, is one of the economically important species in the fisheries industry. Abalone intestines are one of the by-products of its processing. To investigate its bioactive potential, abalone intestine was digested using an in vitro gastrointestinal (GI) digestion system containing pepsin, trypsin, and ${\alpha}$-chymotrypsin. The abalone intestine G1 digests (AIGIDs) produced by the GI digestion system were fractionated into AIGID I (> 100 kDa), AIGID II (10-100 kDa), and AIGID III (1-10 kDa) using an ultrafiltration membrane system. Of the three digests, AIGID II and AIGID III exhibited inhibitory effects against matrix metalloproteinase-2 and -9 (MMP-2, MMP-9) in HT1080 human fibrosarcoma cells. Both fractions potently inhibited gelatine digestion by MMP-2 and MMP-9 treated with phorbol 12-myristate 13-acetate (PMA) and migration of HT1080 cells in dose dependently. Furthermore, AIGID II and III attenuated expression of p65, a component of nuclear transcription factor kappa B. These results indicate that of the abalone intestine digests inhibit MMP-2 and MMP-9. Thus, the AIGIDs or their active components may have preventive and therapeutic potential for diseases associated with MMP-2 and MMP-9 activation in fibrosarcoma cells.