• 제목/요약/키워드: ${\kappa}$ receptor

검색결과 423건 처리시간 0.026초

신통축어탕(身痛逐瘀湯)이 늑골골절 유발 Rat의 골유합에 미치는 영향 (The Effect of Sintongchukea-tang (Shentongzhuyu-tang) on Bone Fusion in Rib Fractured Rats)

  • 남대진;오민석
    • 한방재활의학과학회지
    • /
    • 제30권3호
    • /
    • pp.1-21
    • /
    • 2020
  • Objectives This study was designed to evaluate the bone regeneration effects of Sintongchukea-tang (SC) on rib fractured rats. Methods Rats were randomly divided into 5 groups (normal, control, positive control, SC low [SC-L] and SC high [SC-H]). All groups were subject to fractured rib except normal group. Normal group received no treatment at all. Control group was orally fed with phosphate buffered saline, and positive control group was medicated with tramadol (20 mg/kg). SC group was orally medicated with SC (50 mg/kg, 100 mg/kg) once a day for 14 days. The fracture healing process was observed by x-ray, micro CT and fracture tissue slide was observed by immunohistochemical staining. We analysed levels of transforming growth factor-β1, Ki67, alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), receptor activator of nuclear factor kappa-β, tartrate resistant acid phosphatase (TRAP) and analysed levels of Osteocalcin in plasma. We measured levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), ALP, blood urea nitrogen (BUN) and creatinine in plasma, for hepatotoxicity and nephrotoxicity of SC. Results Though X-ray and micro-computed tomography, more callus formation was observed and bone union was progressing. Through Hematoxylin and Eosin, callus formation was increased compared to the control group. Runx2 level at SC-H was significantly increased and TRAP level at SC-L was significantly decreased compared with the control group. AST, ALT, ALP, BUN and creatinine were not statistically different from the control group. Conclusions As described above, SC promoted fracture healing by stimulating the bone regeneration factor. And SC shows no hepatotoxicity and nephrotoxicity. In conclusion, it seems that SC helps to promote fracture regeneration and it can be used clinically to patients with fracture.

골절 유발 Rat에 대한 혈부축어탕(血府逐瘀湯)의 전임상 연구 (The Preclinical Study of Hyeolbuchugeo-tang (Xuefuzhuyu-tang) on Bone Healing in Rats with Rib Fracture)

  • 허건;오민석
    • 한방재활의학과학회지
    • /
    • 제30권3호
    • /
    • pp.23-44
    • /
    • 2020
  • Objectives The purpose of this study is to evaluate the healing effect of Hyeolbuchugeo-tang (HC) in rats with rib fracture. Methods Rats were randomly divided into 5 groups (naive, control, positive control, HC-L and HC-H). All groups except naive group were subjected to bone fracture of rib. Naive group received no treatment at all. Control group was fed with phosphate buffered saline. Positive control group was orally medicated with tramadol. Experimental group was orally medicated with HC extract (50 mg/kg for low concentration [HC-L], 100 mg/kg for high concentration [HC-H]). X-ray and micro-computed tomography (micro-CT) were conducted to assess the effect of HC. We analysed the level of 2) transforming growth factor-β1 (TGF-β1), Ki67, alkaline phosphatase (ALP), receptor activator of nuclear factor kappa-β, runt-related transcription factor 2 (Runx2) and tartrate resistant acid phosphatase (TRAP) on 7 and 14 days after fracture. ALP, alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen, creatinine was measured for safety assessment. Results X-ray and micro-CT, showed HC enhance bone repair process. Callus formation was increased in experimental group at 7 days after fracture, but decreased at 14 days after fracture. 7 days after fracture, the level of TGF-β1 in experimental group was decreased. The level of Ki67, Runx2 in HC-H, TRAP in HC-L was increased. 14 days after fracture, the level of Ki67 in HC-L and HC-H was decreased. The level of ALP, Runx2, BUN in HC-L, TRAP in HC-L and HC-H was increased. Conclusions Taken together the results, HC promoted healing of bone fracture. In conclusion, HC has a potential to promote healing of bone fracture.

Suppression of the TRIF-dependent signaling pathway of toll-like receptors by (E)-isopropyl 4-oxo-4-(2-oxopyrrolidin-1-yl)-2-butenoate

  • Park, Se-Jeong;Park, Hye-Jeong;Kim, Soo-Jung;Shin, Hwa-Jeong;Min, In-Soon;Koh, Kwang-Oh;Kim, Dae-Young;Youn, Hyung-Sun
    • BMB Reports
    • /
    • 제44권7호
    • /
    • pp.468-472
    • /
    • 2011
  • Toll-like receptors (TLRs) are pattern recognition receptors that recognize molecular structures derived from microbes and initiate innate immunity. TLRs have two downstream signaling pathways, the MyD88- and TRIF-dependent pathways. Dysregulated activation of TLRs is closely linked to increased risk of many chronic diseases. Previously, we synthesized fumaryl pyrrolidinone, (E)-isopropyl 4-oxo-4-(2-oxopyrrolidin-1-yl)-2-butenoate (IPOP), which contains a fumaric acid isopropyl ester and pyrrolidinone, and demonstrated that it inhibits the activation of nuclear factor kappa B by inhibiting the MyD88-dependent pathway of TLRs. However, the effect of IPOP on the TRIF-dependent pathway remains unknown. Here, we report the effect of IPOP on signal transduction via the TRIF-dependent pathway of TLRs. IPOP inhibited lipopolysaccharide- or polyinosinic-polycytidylic acidinduced interferon regulatory factor 3 activation, as well as interferon-inducible genes such as interferon inducible protein-10. These results suggest that IPOP can modulate the TRIF-dependent signaling pathway of TLRs, leading to decreased inflammatory gene expression.

Cytochalasin B Modulates Macrophage-Mediated Inflammatory Responses

  • Kim, Mi-Yeon;Kim, Jong-Hoon;Cho, Jae Youl
    • Biomolecules & Therapeutics
    • /
    • 제22권4호
    • /
    • pp.295-300
    • /
    • 2014
  • The actin cytoskeleton plays an important role in macrophage-mediated inflammatory responses by modulating the activation of Src and subsequently inducing nuclear factor (NF)-${\kappa}B$ translocation. In spite of its critical functions, few papers have examined how the actin cytoskeleton can be regulated by the activation of toll-like receptor (TLR). Therefore, in this study, we further characterized the biological value of the actin cytoskeleton in the functional activation of macrophages using an actin cytoskeleton disruptor, cytochalasin B (Cyto B), and explored the actin cytoskeleton's involvement in morphological changes, cellular attachment, and signaling events. Cyto B strongly suppressed the TLR4-mediated mRNA expression of inflammatory genes such as cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-${\alpha}$, and inducible nitric oxide (iNOS), without altering cell viability. This compound also strongly suppressed the morphological changes induced by lipopolysaccharide (LPS), a TLR4 ligand. Cyto B also remarkably suppressed NO production under non-adherent conditions but not in an adherent environment. Cyto B did not block the co-localization between surface glycoprotein myeloid differentiation protein-2 (MD2), a LPS signaling glycoprotein, and the actin cytoskeleton under LPS conditions. Interestingly, Cyto B and PP2, a Src inhibitor, enhanced the phagocytic uptake of fluorescein isothiocyanate (FITC)-dextran. Finally, it was found that Cyto B blocked the phosphorylation of vasodilator-stimulated phosphoprotein (VASP) at 1 min and the phosphorylation of heat shock protein 27 (HSP27) at 5 min. Therefore, our data suggest that the actin cytoskeleton may be one of the key components involved in the control of TLR4-mediated inflammatory responses in macrophages.

Twist2 Regulates CD7 Expression and Galectin-1-Induced Apoptosis in Mature T-Cells

  • Koh, Han Seok;Lee, Changjin;Lee, Kwang Soo;Park, Eun Jung;Seong, Rho H.;Hong, Seokmann;Jeon, Sung Ho
    • Molecules and Cells
    • /
    • 제28권6호
    • /
    • pp.553-558
    • /
    • 2009
  • In the periphery, a galectin-1 receptor, CD7, plays crucial roles in galectin-1-mediated apoptosis of activated T-cells as well as progression of T-lymphoma. Previously, we demonstrated that $NF-{\kappa}B$ downregulated CD7 gene expression through the p38 MAPK pathway in developing immature thymocytes. However, its regulatory pathway is not well understood in functional mature T-cells. Here, we show that CD7 expression was downregulated by Twist2 in Jurkat cells, a human acute T-cell lymphoma cell line, and in EL4 cells, a mature murine T-cell lymphoma cell line. Furthermore, ectopic expression of Twist2 in Jurkat cells reduced galectin-1-induced apoptosis. While full-length Twist2 decreased CD7 promoter activity, a C-terminal deletion form of Twist2 reversed its inhibition, suggesting an important role of the C-terminus in CD7 regulation. In addition, CD7 expression was enhanced by histone deacetylase inhibitors such as trichostatin A and sodium butyrate, which indicates that Twist2 might be one of candidate factors involved in histone deacetylation. Based on these results, we conclude that upregulation of Twist2 increases the resistance to galectin-1-mediated-apoptosis, which may have significant implications for the progression of some T-cells into tumors such as Sezary cells.

Detection and Characterization of PCR-SSCP Markers of the Bovine Lactoferrin Gene for Clinical Mastitis

  • Zhou, Lei;Yang, Yuan-Yuan;Li, Zhong-Hao;Kong, Li-Juan;Xing, Guan-Dong;Di, He-Shuang;Wang, Gen-Lin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권10호
    • /
    • pp.1399-1403
    • /
    • 2006
  • A total of 80 cows, including 40 top mastitis resistant and 40 top mastitis susceptible animals as Group I and Group II, were selected from a population of 520 cows based on clinical mastitis occurrence. PCR-SSCP analysis on four fragments within the 5'region and two fragments of Exons 4,15 of bovine lactoferrin (bLF) revealed that four fragments-P1,P4,E4,E15-had polymorphisms which totally included six base mutations, and only two of them had significant differences in allele frequencies between resistant and susceptible groups, P1 (53.7% vs. 70.0%, p<0.05) and P4 (55.0% vs. 68.8%, p<0.05). Further study on these two promising markers combined with the milk performance traits of cows demonstrated that their selection would result in higher fat percentage (p<0.05), lower Somatic Cell Score (SCS) (p<0.05) and Clinical Mastitis Residuals (CMR) (p<0.01) indicating higher mastitis resistance and lower milk yield (p<0.05). The putative transcription factor binding sites in the 5'region were also studied by using MatInspector 7.2.2 software, and two signal pathways regulating the expression of bLF including the NF-${\kappa}B$ pathway and nuclear hormone receptor pathway were predicted.

마우스 치주인대 섬유모세포에서 RANKL 조절에 대한 p38 MAP kinase의 역할 (The role of p38 MAP kinase on RANKL regulation in mouse periodontal ligament fibroblasts)

  • 김재철;최득철;김영준
    • Journal of Periodontal and Implant Science
    • /
    • 제37권sup2호
    • /
    • pp.311-323
    • /
    • 2007
  • Receptor activation of nuclear factor ${\kappa}$ B ligand (RANKL)은 파골세포의 분화와 기능에 중요한 역할을 하는 단백질로 이들 물질의 조절에는 p38 MAP kinase가 관여한다. 그러나 치주인대 섬유모세포에서 RANKL 발현 시 p38 MAP kinase의 역할은 잘 알려져 있지 않다. 이에 이번 연구는 마우스 치주인대 섬유모세포의 $IL-1{\beta}-induced$ RANKL 발현과정에서 p38의 역할을 규명하고자 하여 다음과 같은 결과를 얻었다. 마우스 치주인대 섬유모세포에 $IL-1{\beta}$ (1ng/ml)의 자극은 수용성 RANKL의 합성을 증가시켰다. 수용성 RANKL의 합성은 p38 MAP kinase 억제제인 SB203580에 의해 농도 의존적으로 억제되었으나 다른 MAP kinase 억제제인 SP600125, JNK 억제제와 PD98059, ERK 억제제에 의해서는 수용성 RANKL의 합성이 조절되지 않았다. NF-kB 억제제에 의해서도 수용성 RANKL의 합성이 억제되지 않았다. RANKL 유전자의 발현은 $IL-1{\beta}$로 자극 시에는 대조군에 비해 약 5배의 발현 증가를 보였으나 SB203580으로 전처치 시 $IL-1{\beta}$ (1ng/ml)로 자극시보다 약 1.5배의 감소를 보였다. 그러나 SP600125, PD98059, 및 NF-kB 억제제로 전처치한 경우에는 $IL-1{\beta}$로 자극한 경우와 비슷한 수준을 보였다. $IL-1{\beta}$로 자극 시 RANKL 유전자의 반감기가 90분 이었으나 SB203580로 전처치 후 $IL-1{\beta}$로 자극 시 RANKL 유전자의 반감기는 60분으로 감소하였다. Cycloheximide 전처리 시 SB203580에 의한 RANKL 유전자 발현 억제가 관찰되지 않았다. 단백질 분석결과 p38 MAP kinase의 인산화 활성은 30분까지 증가하였으나 그 이후 감소하여 2시간째에는 그 발현이 미약하였다. SB203580로 전처치 후 $IL-1{\beta}$로 자극 시 p38 MAP kinase의 인산화 활성이 감소하였다. 이상의 결과는 p38 MAP kinase가 RANKL 유전자 조절에 중요한 역할을 담당하고 있음을 시사한다.

Role of p38 MAPK in the Regulation of Apoptosis Signaling Induced by TNF-α in Differentiated PC12 Cells

  • Park, Jung-Gyu;Yuk, Youn-Jung;Rhim, Hye-When;Yi, Seh-Yoon;Yoo, Young-Sook
    • BMB Reports
    • /
    • 제35권3호
    • /
    • pp.267-272
    • /
    • 2002
  • TNF-$\alpha$ elicits various responses including apoptosis, proliferation, and differentiation according to cell type. In neuronal PC12 cells, TNF-$\alpha$ induces moderate apoptosis while lipopolysarccaharide or trophic factor deprivation can potentiate apoptosis that is induced by TNF-$\alpha$. TNF-$\alpha$ initiates various signal transduction pathways leading to the activation of the caspase family, NF-${\kappa}B$, Jun N-terminal kinase, and p38 MAPK via the death domain that contains the TNF-$\alpha$ receptor. Inhibition of translation using cycloheximide greatly enhanced the apoptotic effect of TNF-$\alpha$. This implies that the induction of anti-apoptotic genes for survival by TNF-$\alpha$ may be able to protect PC12 cells from apoptosis. Accordingly, Bcl-2, an anti-apoptotic genes for survival by TNF-$\alpha$ may be able to protect PC12 cells from apoptosis. Accordingly, Bcl-2, an anti-apoptotic Bcl-2 family member, was highly expressed in response to TNF-$\alpha$. In this study, we examined the anti-apoptotic role of p38 MAPK that is activated by TNF-$\alpha$ in neuronal PC12 cells. The phosphorylation of p38 MAPK in response to TNF-$\alpha$ slowly increased and lasted several hours in the PC12 cell and DRG neuron. This specific inhibitor of p38 MAPK, SB202190, significantly enhanced the apoptosis that was induced by TNF-$\alpha$ in PC12 cells. This indicates that the activation of p38 MAPK could protect PC12 cells from apoptosis since there is no known role of p38 MAPK in resoonse to TNF-$\alpha$ in neuron. This discovery could be evidence for the neuroprotective role of the p38 MAPK.

Combined effect of bisphosphonate and recombinant human bone morphogenetic protein 2 on bone healing of rat calvarial defects

  • Kim, Ho-Chul;Song, Jae-Min;Kim, Chang-Joo;Yoon, Sang-Yong;Kim, In-Ryoung;Park, Bong-Soo;Shin, Sang-Hun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제37권
    • /
    • pp.16.1-16.7
    • /
    • 2015
  • Background: This study aimed to investigate new bone formation using recombinant human bone morphogenetic protein 2 (rhBMP-2) and locally applied bisphosphonate in rat calvarial defects. Methods: Thirty-six rats were studied. Two circular 5 mm diameter bony defect were formed in the calvaria using a trephine bur. The bony defect were grafted with $Bio-Oss^{(R)}$ only (group 1, n = 9), $Bio-Oss^{(R)}$ wetted with rhBMP-2 (group 2, n = 9), $Bio-Oss^{(R)}$ wetted with rhBMP-2 and 1 mM alendronate (group 3, n = 9) and $Bio-Oss^{(R)}$ wetted with rhBMP-2 and 10 mM alendronate (group 4, n = 9). In each group, three animals were euthanized at 2, 4 and 8 weeks after surgery, respectively. The specimens were then analyzed by histology, histomorphometry and immunohistochemistry analysis. Results: There were significant decrease of bone formation area (p < 0.05) between group 4 and group 2, 3. Group 3 showed increase of new bone formation compared to group 2. In immunohistochemistry, collagen type I and osteoprotegerin (OPG) didn't show any difference. However, receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL) decreased with time dependent except group 4. Conclusion: Low concentration bisphosphonate and rhBMP-2 have synergic effect on bone regeneration and this is result from the decreased activity of RANKL of osteoblast.

Therapeutic Effects of Panax ginseng on the Neurotoxicity Induced by Abuse Drugs

  • Oh Ki-Wan
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2005년도 추계학술대회
    • /
    • pp.49-66
    • /
    • 2005
  • Panax ginseng has been useful for the treatment of diverse disease in oriental countries for thousands of years. In addition, a folk medicine prescribed by seven herbal drugs including Panax ginseng has been antinarcotics in the treatment of morphine-dependent patients. Many articles have been reported on these works. Therefore, we review the protective effects of Panax ginseng on the neurotoxicity induced by abuse drugs. Ginseng total saponins (GTS) extracted and isolated by Panax ginseng antagonized Morphine-induced analgesia, and inhibited the development of analgesic tolerance to and physical dependence on morphine. GTS inhibited morphine-6 dehydrogenase, which catalyzes production of mophinone from morphine, and increased hepatic glutathione level responsible to toxicity. Therefore, we hypothesized that these dual actions of ginseng can be associated with the detoxication of morphine. In addition, the inhibitory or facilitated effects of GTS on electrically evoked contraction in guinea pig ileum ($\mu$-receptors) and mouse vas deferens($\delta$-receptors) were not mediated through opioid receptors, suggesting non-opioid mechanisms. On the hand, antagonism of U-50,488H ($\kappa$-agonist)-induced antinociception is mediated by serotonergic mechanisms. GTS also inhibited hyperactivity, reverse tolerance (sensitization) and conditioned place preference-induced by psychostimulants such as methamphetamine, cocaine and morphine. On the other hand, GTS reduced the dopamine levels induced by methamphetamine. Moreover, GTS blocked the development of dopamine receptor activation, showing antidopaminergic effect. We suggest that GTS Prevent the methamphetamine-induced striatal dopaminergic neurotoxicity. In addition, Ginsenoside also attenuates morphine-induced cAMP signaling pathway. These results suggested that GTS might be useful for the therapy of the adverse actions of drugs with abuse liability.

  • PDF