• 제목/요약/키워드: ${\gamma}GCS$

검색결과 20건 처리시간 0.022초

글루타치온 생산효소( $\gamma$-Glutamylcysteine Synthetase)와 그 변이효소의 구조분석 및 반응 Kinetics 연구

  • 양혜정;권대영
    • 식품기술
    • /
    • 제17권4호
    • /
    • pp.98-106
    • /
    • 2004
  • Two mutant enzymes of $\gamma$-glutamylcysteine synthetase ($\gamma$-GCS) which catalyzed the synthesis of $\gamma$-glutamylcysteine from L-glutamic acid and L-cysteine in the presence of ATP, were prepared bypoint mutation of $\gamma$-GCS gene with site-directed mutagensis in E. coli. Conformational structuresand catalytic reaction kinetics of mutant enzymes were compared with wild type $\gamma$-GCS afterpurification. The S495F mutant enzyme (serine at 495 residue was substituted with phenylalanine),which had no catalytic activity for $\gamma$-glutamylcysteine synthesis, rarely folded even in neutral pH.However, the mutant A494V (alanine of 494 residue was replaced by valnine) which showed 50 %increase of activity, had a high folding structure. The folding structure of A494V also more stable athigh temperature and extreme pH compared to wild type and S495F. Reaction kinetics of wild typeand A494V were also investigated, Km value of A494V was smaller than that of wild type, while itshowed a little difference at Vmax values. This result evolved that alanine at 494 may be involved inbinding site of substrate rather than catalytic site. In addition, change of catalytic activity by onepoint mutation was highly correlated with the folding structure of enzyme.

  • PDF

Expression of the genes for peroxisome proliferator-activated receptor-γ, cyclooxygenase-2, and proinflammatory cytokines in granulosa cells from women with polycystic ovary syndrome

  • Lee, Joong Yeup;Tae, Jin Cheol;Kim, Chung Hyon;Hwang, Doyeong;Kim, Ki Chul;Suh, Chang Suk;Kim, Seok Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제44권3호
    • /
    • pp.146-151
    • /
    • 2017
  • Objective: To identify differences in the expression of the genes for peroxisome proliferator-activated receptor $(PPAR)-{\gamma}$, cyclooxygenase (COX)-2, and the proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor $(TNF)-{\alpha}$ in granulosa cells (GCs) from polycystic ovary syndrome (PCOS) patients and controls undergoing controlled ovarian stimulation. Methods: Nine patients with PCOS and six controls were enrolled in this study. On the day of oocyte retrieval, GCs were collected from pooled follicular fluid. Total mRNA was extracted from GCs. Reverse transcription was performed and gene expression levels were quantified by realtime quantitative polymerase chain reaction. Results: There were no significant differences in age, body mass index, and total gonadotropin dose, except for the ratio of luteinizing hormone to follicle-stimulating hormone between the PCOS and control groups. $PPAR-{\gamma}$ and COX-2 mRNA was significantly downregulated in the GCs of PCOS women compared with controls (p= 0.034 and p= 0.018, respectively), but the expression of IL-6 and $TNF-{\alpha}$ mRNA did not show significant differences. No significant correlation was detected between the expression of these mRNA sequences and clinical characteristics, including the number of retrieved oocytes, oocyte maturity, cleavage, or the good embryo rate. Positive correlations were found among the $PPAR-{\gamma}$, COX-2, IL-6, and $TNF-{\alpha}$ mRNA levels. Conclusion: Our data may provide novel clues regarding ovarian GC dysfunction in PCOS, and indirectly provide evidence that the effect of $PPAR-{\gamma}$ agonists in PCOS might result from alterations in the ovarian follicular environment. Further studies with a larger sample size are required to confirm these proposals.

Protective Effects of Methanol Extract and Alisol B 23-acetate of Alisma orientale on Acetaminophen-Induced Hepatotoxicity in Rats

  • Yang, Ki-Ho;Choi, Seong-Hee;Park, Jong-Cheol
    • Natural Product Sciences
    • /
    • 제18권2호
    • /
    • pp.121-129
    • /
    • 2012
  • Hepatoprotective effects of methanol extract and alisol B 23-acetate of Alisma orientale were studied in acetaminophen (APAP)-treated rats. APAP increased hepatic content of lipid peroxide, which was suppressed by methanol extract and alisol B 23-acetate. The liver of rats treated with APAP had higher P-450, aminopyrine N-demethylase and aniline hydroxylase activities than those of normal control rats. The increases in hepatic drug metabolizing enzymes by the i.p. injection of APAP were significantly alleviated by the administration of methanol extract or alisol B 23-acetate. The injection of APAP also resulted in a substantial reduction of hepatic glutathione content and glutathione S-transferase activity, and the decreases were partially, but significantly, restrained by the oral administration of methanol extract prior to the i.p. injection of APAP. Hepatic activities of glutathione reductase (GR) and ${\gamma}$-glutamylcystein synthetase ${\gamma}$-GCS) were also decreased significantly in APAP-treated rats. The decreases in hepatic GR and ${\gamma}$-GCS activities by APAP injection were improved partially, but significantly, with administration of methanol extract of A. orientale. Treatment with alisol B 23-acetate also improved the hepatic ${\gamma}$-GCS activity significantly, but not GR.

Transcriptional Regulation of the Gene Encoding ${\gamma}$-Glutamylcysteine Synthetase from the Fission Yeast Schizosaccharomyces pombe

  • Kim, Su-Jung;Kim, Hong-Gyum;Kim, Byung-Chul;Kim, Kyunghoon;Park, Eun-Hee;Lim, Chang-Jin
    • Journal of Microbiology
    • /
    • 제42권3호
    • /
    • pp.233-238
    • /
    • 2004
  • Transcriptional regulation of the Schizosaccharomyces pombe y-glutamylcysteine synthetase (GCS) gene was examined using the two GCS-lacZ fusion plasmids pUGCS101 and pUGCS102, which harbor 607 bp and 447 bp upstream regions, respectively. The negatively-acting sequence was located in the -607 - -447 bp upstream region of the GCS gene. The upstream sequence responsible for induction by menadione(MD) and L-buthionine-(S, R)-sulfoximine (BSO) resides in the -607 - -447 bp region, whereas the sequence which codes for nitric oxide induction is located within the -447 bp region, measured from the translational initiation point. Carbon source-dependent regulation of the GCS gene appeared to be dependent on the nucleotide sequence within -447 bp region. The transcription factor Papl is involved in the induction of the GCS gene by MD and BSO, but not by nitric oxide. Induction of the GCS gene occurring due to low glucose concentration does not depend on the presence of Pap1. These data imply that induction by MD and BSO may be mediated by the Pap1 binding site, probably located in the -607 - -447 region, and also that the nitric oxide-mediated regulation of the S. pombe GCS gene may share a similar mechanism with its carbon-dependent induction.

Glutathione Content and the Activities of Glutathione-Synthesizing Enzymes in Fission Yeast are Modulated by Oxidative Stress

  • Lee, Yuk-Young;Kim, Su-Jung;Park, Eun-Hee;Lim, Chang-Jin
    • Journal of Microbiology
    • /
    • 제41권3호
    • /
    • pp.248-251
    • /
    • 2003
  • Glutathione (GSH) is an important factor in determining tolerance against oxidative stress in living organisms. It is synthesized in two sequential reactions catalyzed by ${\gamma}$-glutamylcysteine synthetase (GCS) and glutathione synthetase (GS) in the presence of ATP. In this work, the effects of three different oxidative stresses were examined on GSH content and GSH-related enzyme activities in the fission yeast Schizosaccharomyces pombe. GSH content in S. pombe was significantly enhanced by treatment with hydrogen peroxide, ${\beta}$-naphthoflavone (BNF) and tert-butylhydroquinone (BHQ). Simultaneously, they greatly induced GCS and GS activity. However, they did not have any effects on glutathione reductase activity. These results suggest that GCS and GS activities in S. pombe are up-regulated by oxidative stress.

Gamma correction FCM algorithm with conditional spatial information for image segmentation

  • Liu, Yang;Chen, Haipeng;Shen, Xuanjing;Huang, Yongping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권9호
    • /
    • pp.4336-4354
    • /
    • 2018
  • Fuzzy C-means (FCM) algorithm is a most usually technique for medical image segmentation. But conventional FCM fails to perform well enough on magnetic resonance imaging (MRI) data with the noise and intensity inhomogeneity (IIH). In the paper, we propose a Gamma correction conditional FCM algorithm with spatial information (GcsFCM) to solve this problem. Firstly, the pre-processing, Gamma correction, is introduced to enhance the details of images. Secondly, the spatial information is introduced to reduce the effect of noise. Then we introduce the effective neighborhood mechanism into the local space information to improve the robustness for the noise and inhomogeneity. And the mechanism describes the degree of participation in generating local membership values and building clusters. Finally, the adjustment mechanism and the spatial information are combined into the weighted membership function. Experimental results on four image volumes with noise and IIH indicate that the proposed GcsFCM algorithm is more effective and robust to noise and IIH than the FCM, sFCM and csFCM algorithms.

Roles of Glutathione Reductase and $\gamma$-Glutamylcysteine Synthetase in Candida albicans

  • Baek, Yong-Un;Yim, Hyung-Soon;Kang, Sa-Ouk
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.61-61
    • /
    • 2003
  • We have cloned the CGR1 gene encoding glutathione reductase (GR) which catalyzes the reduction of oxidized glutathione (GSSG) to reduced glutathione (GSH) from Candida albicans. The cgr1/cgr1 mutants were not viable when CaMAL2 promoter repressed the CGR1 expression. The growth of the mutants could be partially overcome by thiol compounds such as GSH, dithiothreitol, cysteine, N-acetylcysteine and GSSG. Interestingly, C. albicans with CGR1 overexpressed showed defective hyphal growth on solid medium and attenuated virulence. We have also cloned the GCS1 gene encoding ${\gamma}$-glutamylcysteine synthetase which catalyzes the first step of glutathione biosynthesis. The gcs1/gcs1 mutants were nonviable in minimal defined medium. The growth of the mutants could be resumed by supplementing with GSH, GSSG and ${\gamma}$-glutamylcysteine in the medium. The mutants had increased intracellular D-erythroascorbic acid level up to 2.25-fold when transferred to GSH-free medium. When the mutants were depleted of GSH, they showed typical markers of apoptosis. In conclusion, these results suggest that glutathione is an essential metabolite, and involved in hyphal growth, virulence and apoptosis in C. albicans.

  • PDF

Expression of IgG1 Germline Transcripts in Germinal Center B Cells of Mouse Popliteal Lymph Nodes

  • Lee, In-Woo;Kim, Jin-Ho;Chung, Gook-Hyun
    • BMB Reports
    • /
    • 제29권2호
    • /
    • pp.127-132
    • /
    • 1996
  • Germinal centers (GCs) are formed in peripheral lymphoid tissues in response to protein antigens. In order to see if immunoglobulin isotype switching takes place in GC B-cells, we isolated GC B-cells (PNA positive cells) from mouse popliteal lymph nodes by a flow cytometer after the staining of lymph node cells with PNA-FITC and anti-B220-PE, and determined the expression of ${\gamma}1$ germline transcript and ${\gamma}1$ mRNA by RT-PCR. ${\gamma}1$ germline transcript and ${\gamma}1$ mRNA were amplified specifically in cDNAs from hybridoma expressing IgG1 or splenocytes stimulated LPS plus IL-4. Germinal center B-cells formed in popliteal lymph nodes of mice immunized with chicken ovalbumin were isolated 7 days after immunization. We sorted GC B-cells five times. Immunoglobulin ${\gamma}1$ germline transcripts were expressed in germinal center B-cells in three out of five sorts whereas two out of five sorts did not express ${\gamma}1$ germline transcripts in GC B-cells. The contents of GC B-cells ranged from 5 to 7% of total lymph node cells in most flow cytometric analyses but those of two sorted cells which did not express ${\gamma}1$ germline transcripts were out of normal range. These results imply that isotype switching of immunoglobulins may take place in GCs.

  • PDF

항암제 내성 L1210세포의 Glutathione 대사 관련효소 유전자의 발현 양상 (Gene Expression of Enzymes Related to Glutathione Metabolism in Anticancer Drug-resistant L1210 Sublines)

  • 김성용;김재룡;김정희
    • Journal of Yeungnam Medical Science
    • /
    • 제12권1호
    • /
    • pp.32-47
    • /
    • 1995
  • 생쥐의 백혈병세포 L1210과 항암제에 대하여 내성이 유도된 L1210AdR, L1210VcR과 L1210Cis에서 glutathione의 농도와 glutathione의 합성 조절에 관여하는 ${\gamma}$-glutamylcysteine synthetase(GCS)와 ${\gamma}$-glutamyl transpeptidase (GGT), 세포 이물질을 축합하는데 촉매하는 glutathione S-transferase(GST)의 효소 활성도와 유전자의 발현 여부를 관찰하였다. 세포내 glutathione농도(${\mu}M/mg$ protein)는 L1210이 $0.41{\pm}0.003$, L1210AdR가 $0.73{\pm}0.006$, L1210VcR은 $1.16{\pm}0.060$, L1210Cis가 $2.19{\pm}0.282$으로 모세포에 비하여 내성세포에서 통계적으로 유의한 증가를 관찰하였다. Buthionine sulfoxamine(BSO)를 1 ${\mu}M$농도로 첨가하여 12시간 배양한 세포들에서의 glutathione농도는 L1210이 88%, L1210AdR가 85%, L1210VcR이 89%, 그리고 L1210Cis는 79%의 감소를 보였다. GCS의 활성도(nM/mg protein/min)는 L1210이 104인데 비하여 L1210AdR가 128, L1210VcR는 227, 및 L1210Cis는 212로 증가하였다. GGT의 활성도(nM/mg protein/min)는 L1210이 $2.15{\pm}0.531$이었고, L1210AdR은 $2.80{\pm}0.498$, L1210VcR은 $2.42{\pm}0.389$, 그리고 L1210Cis는 $2.98{\pm}0.623$으로 내성인 세포들에서 증가하였으며 L1210AdR과 L1210Cis에서 유의하였다. GST활성도(nM/mg protein/min)는 L1210이 $16.70{\pm}4.798$이었고, L1210AdR은 $14.51{\pm}3.402$, L1210VcR은 $19.52{\pm}4.255$, L1210Cis $17.77{\pm}4.495$로 L1210VcR과 L1210Cis가 약간의 증가를 보였으며, L1210AdR은 오히려 감소를 보였다. DNA의 slot blot에서 GCS, GGT, GST 유전자의 모세포와 내성세포간에 별다른 차이를 보이지 않았다. Northern hybridization에서 GCS는 약 4.5kb 크기의 band, GST-${\pi}$는 약 1.05kb 크기의 band를 보였으며 내성세포 모두에서 발현 증가가 관찰되었다. GGT의 경우 크기가 다른 6개의 band가 보였으며 특히 11.5 kb크기의 band에서 L1210AdR과 L1 210VcR의 발현이 증가하였으며, L1210VcR에서는 L1210과 다른 내성세포에서 보이는 1.95kb크기의 band가 보이지 않고 2.2kb 크기의 다른 band가 관찰되었다. 이상에서 L1210AdR과 L1210VcR의 내성에는 mdr1 유전자가 관여하고, L1210Cis의 내성에는 특히 glutathione이 중요하다. GCS, GGT 및 GST등의 활성도 및 유전자의 발현도 내성세포들에서 증가하였으며 이중 GCS는 내성세포내의 glutathione 합성에 가장 중요한 조절인자라 할 수 있다.

  • PDF

랫트 간에서 tert-Butylhydroperoxide 투여에 의한 글루타치온과 타우린의 생합성 변화 (Changes in Biosynthesis of Glutathione and Taurine in Rat Liver Challenged with tert-Butylhydroperoxide)

  • 김선주;박현아;김영철
    • 약학회지
    • /
    • 제53권6호
    • /
    • pp.314-320
    • /
    • 2009
  • We examined metabolic conversion of cysteine into glutathione (GSH) and taurine in rat liver under oxidative stress. Administration of tert-butylhydroperoxide (t-BHP) into the portal vein of male rats resulted in a rapid elevation of serum sorbitol dehydrogenase, alanine aminotransferase, and aspartate aminotransferase activities, which decreased gradually in 24 hr. Hepatic cysteine concentration was reduced in 3 hr, and recovered progressively, reaching a level greater than 200% of the normal value in 24 hr. GSH was increased both in liver and blood at 9 hr after t-BHP challenge, whereas hypotaurine or taurine was not altered. $\gamma$-Glutamylcysteine synthetase (GCS) activity was increased from 9 hr after t-BHP treatment, but protein expression of the GCS-heavy subunit was not changed in liver. Activity or expression of cysteine dioxygenase was not affected by t-BHP treatment. Taken together, these data show that an acute oxidant challenge to the rats may induce upregulation of cysteine availability and GCS activity, resulting in an enhancement of hepatic GSH synthesis, but the increased cysteine level does not stimulate taurine synthesis via cysteine sulfinate pathway. It is indicated that the regulation of GSH and taurine biosynthesis from cysteine is not solely dependent on the cysteine concentration in rat liver under oxidative stress.