• Title/Summary/Keyword: ${\gamma}-C_2S$의 수화

Search Result 3, Processing Time 0.019 seconds

A Review Study on the Application of γ-C2S (γ-C2S 활용에 관한 문헌적 연구)

  • Chen, zheng-xin;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.118-119
    • /
    • 2016
  • γ-C2S is known as a kind of substance that it does not react with water at room temperature. However it could react with the CO2 producing CaCO3 and silica gel as the carbonation products. Thus γ-C2S can be used as a mineral addition to improve the compressive strength and durability of concrete. On the other hand, the manufacture of γ-C2S can give an effective utilization of industrial by-product with low energy consumption and low CO2 emission. This paper aims to summarize the development situation on this field.

  • PDF

Effect of CH3COOH Concentration on Characteristics of Fe2O3Supported δ-alumina Catalyst by Hydrothermal Method (CH3COOH 농도가 수열법으로 제조된 Fe2O3 담지 감마알루미나 촉매의 특성에 미치는 영향)

  • 박병기;이정민;서동수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.758-764
    • /
    • 2003
  • The cylindrical ${\gamma}$-alumina pellets were prepared by forming, hydration, drying and calcination after mixing amorphous alumina and pore generating agent with water. Concentration of Fe(NO$_3$)$_3$ㆍ9$H_2O$ that was catalyst precursor was fixed and made mixing solution that changed concentration of $CH_3$COOH in range of 2.5~20%, and here ${\gamma}$-alumina pellets were immerged and were hydrothermaly treated for 3 h at $200^{\circ}C$. And then we investigated creation and change of crystal, pore characteristics, $N_2$ adsorption and desorption isotherms, changes of acid site and mechanical strengths etc. According to the concentration of $CH_3$COOH, the crystals grew to acicular shape of 0.5~2${\mu}m$ length, and crystal structure showed the pseudo-boehmite structure. When hydrothermaly treated in 10% $CH_3$COOH solution, pore volume between 100~1000 $\AA$ was highest by 0.86 cc/g, and width of hysteresis curved line due to $N_2$ adsorption/desorption appeared as was smallest. When concentration of $CH_3$COOH was in range of 5~15%, new C-H functional groups were formed. Mechanical strength of pellets was highest by 1.35 MPa when $CH_3$COOH concentration was 2.5%.

An Experimental Study on the Required Performances of Roof Concrete Placed in the In-ground LNG Storage Tank (지하식 LNG 저장탱크의 지붕 콘크리트의 요구성능에 관한 실험적 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.339-345
    • /
    • 2013
  • This study is to derive from the required performances and the optimum mix proportion of the roof concrete placed in the in-ground LNG storage tank with a capacity of 200000 $m^3$, and propose the actual data for site concrete work. The concrete placing work without sliding and segregation in the fresh concrete condition is very important because the slope of domed roof is varied in the large range by its curvature. Also the control of hydration heat and the strength development at test ages are classified with massive section about 1.4 m thick and considered to the pre-stressing work and removal of air support after concrete placing work. Considering above condition, slump range is selected $100{\pm}25$ mm under the slope $20^{\circ}$ and $150{\pm}25$ mm over the slope $20^{\circ}$ s until 60 minutes of elapsed time. Also, the roof concrete is satisfied with compressive strength range including design strength at 91 days (30 MPa), pre-stressing work at 7 days (10 MPa), air support removal work at 21 days (14 MPa). Replacement ratio of limestone powder is determined by confined water ratio test and main design factors include water-cement ratio (W/C), sand-aggregate ratio and dosage of admixture. As test results, the optimum mix proportion of the roof concrete used low heat cement is as followings. 1) Replacement ratio of limestone powder 25% by confined water ratio test 2) Water-cement ratio 57.8% 3) Sand-aggregate ratio 42.0%. Also, test results for the adiabatic temperature rising test is satisfied with its criteria and shown the lower value compared to preceding storage tank (TK-13, 14). These required performances and the optimum mix proportion is to apply the actual construction work.