• Title/Summary/Keyword: ${\gamma}-Aminobutyric$ acid

Search Result 376, Processing Time 0.022 seconds

Antioxidant and Physicochemical Changes in Salvia plebeia R. Br. after Hot-air Drying and Blanching (열풍건조 및 데침 처리에 따른 배암차즈기(Salvia plebeia R. Br.)의 항산화 및 이화학적 특성 변화)

  • Jeong, Ji-Suk;Kim, Yong-Joo;Choi, Bo-Rum;Go, Geun-Bae;Son, Byeong-Gil;Gang, Suk-Won;Moon, Seung-Man
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.6
    • /
    • pp.893-900
    • /
    • 2014
  • The aim of this study was to investigate physicochemical changes in Salvia plebeia R. Br. (SPA) upon hot-air drying and blanching. After hot-air drying and blanching, total polyphenol and flavonoid contents were reduced from 96.64 mg and 48.40 mg gallic acid equivalent/g to 29.70 mg and 22.10 mg quercetin equivalent/g, respectively. DPPH radical scavenging activities at $25{\mu}g/mL$ of SPA were 94.5% for ascorbic acid, 84.3% for hot-air dried SPA, and 59.7% for blanched SPA and there was no significant difference between those of hot-air dried SPA and ascorbic acid as a positive control. Total sugar contents were 7.187% and 6.104% for hot-air dried SPA and blanched SPA, respectively. During the blanching process, sucrose and maltose contents decreased, whereas glucose and fructose contents increased. Glucose and fructose were converted into citric acid in blanched SPA, whereas sucrose and maltose were converted into tartaric acid, malic acid, and succinic acid. Fourteen kinds of amino acids were found, but methionine, lysine, glycine, histidine, and cysteine were absent. The proportion of essential amino acids was 61.76% upon hot-air drying, which was a relatively high amount. In addition, hot-air drying resulted in 1.40 mg/100 g of norvaline as well as 39.00 mg/100 g of GABA, which are non-amino acids. Therefore, Salvia plebeia R. Br. can be used not only as vegetables but also as highly useful and various health functional foods with antioxidant effects and excellent nutrition.

Quality Characteristics of Brown Rice Vinegar Prepared using Varying Amounts of Nuruk (an Amylolytic Enzyme Preparation) and Employing Different Fermentation Conditions (누룩첨가량 및 배양방법을 달리한 현미식초의 품질특성)

  • Lee, Su-Won;Kwon, Joong-Ho;Yoon, Sung-Ran;Woo, Seung-Mi;Yeo, Soo-Hwan;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.18 no.1
    • /
    • pp.26-32
    • /
    • 2011
  • We added Nuruk at various proportions to brown rice Takju, and investigated the quality characteristics of vinegar produced in agitated culture and static culture. The more Nuruk was added, the higher the alcohol concentration. However, when over 30% (w/w) Nuruk was present, the increment in alcohol content was low (maximum 13.5%, v/v). A comparison of the quality of brown rice vinegar produced in agitated culture with that of vinegar produced in static culture showed that titratable acidity in agitated culture vinegar was highest after fermentation with 30% (w/v) Nuruk, at 5.97%. In static culture, the greater the amount of Nuruk added after 16 days of fermentation, the higher the titratable acidity of vinegar produced; this was true upon addition of either 30% (w/v) or 40% (w/v) Nuruk. Free amino acid levels increased in both agitated and static cultures as the level of added Nuruk rose. Moreover, brown rice vinegar produced in static culture had a higher level (7-30%) of total free amino acids than did vinegar produced in agitated culture. In particular, the level of gamma-amino butyric acid, a functional fortifier, was 3-5-fold higher in vinegar produced in agitated culture. The results thus indicate that both the amount of added Nuruk and the type of fermentation affected the level of free amino acid production. A static culture is expected to undergo changes in aroma and sensory characteristics during fermentation, indicating that further research on vinegars is required.

Effects of YK-209 Mulberry Leaves on Disaccharidase Activites of Small Intestine and Blood Glucose-Lowering in Streptozotocin-Induced Diabetic Rats (YK-209뽕잎이 Streptozotocin 유발 당뇨쥐 소장의 이당류분해 효소 활성과 혈당강하에 미치는 영향)

  • 유수경;김미지;김진원;이순재
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.6
    • /
    • pp.1071-1077
    • /
    • 2002
  • The purpose of this study was investigated the effects of YK-209 mulberry leaves on disaccharidase activites of small intestine and blood glucose-lowering in diabetic rats induced with streptozotocin (STZ). Male Sprague-Dawley rats weighing 100$\pm$10 g were randomly assigned to one normal and four STZ-induced diabetic groups; YK-209 0% mulberry leaves diet (DM group),0.1% YK-209 mulberry loaves diet (DM-0.1Y group),0.2% YK-209mulberry leaves diet (DM -0.2Y group), and 0.4% YK-209 mulberry leaves diet (DM -0.4Y group). Diabetes was induced by intravenous injection of 55 mg/kg body weight of STZ in sodium citrate buffer (pH 4.3) via tail vein after 3 weeks feeding of experimental diets. Rats were sacrificed at the 9th day of diabetic states. The functional ingredients in the mulberry leaves, the 1-deoxynojirimycin (DNJ) contents of YK-209 mulberry leaves was higher than those of the Cheongil mulberry leaves. ${\gamma}$ -Aminobutyric acid (GABA) and rutin contents of YK-209 mulberry leaves were 1.3 and 1.4 times higher than those of the Cheongil mulberry leaves, respectively, and vitamin C contents of YK-209 mulberry leaves were also higher than those of the Cheongil mulberry leaves. Intestine index was increased in all diabetic groups, compared with normal group but not significantly different among all diadetic groups. Level of blood glucose was decreased in diadetic rats by supplementation YK-209 mulberry leaves. The disaccharidase activities in proximal part of intestine such as maltase, sucrase, and lactase in YK-209 mulberry leaves supplementation groups were significantly lower than those of DM group, In conclusion, this research indicated that the functional ingredients of YK 209 mulberry leaves were higher than those of the Cheongil leaveses, and YK-209 mulberry leaves has the hypoglycemic effect in STZ-induced diabetic rats.

Preliminary Phantom Experiments to Map Amino Acids and Neurotransmitters Using MRI

  • Oh, Jang-Hoon;Kim, Hyug-Gi;Woo, Dong-Cheol;Rhee, Sun Jung;Lee, Soo Yeol;Jahng, Geon-Ho
    • Progress in Medical Physics
    • /
    • v.29 no.1
    • /
    • pp.29-41
    • /
    • 2018
  • The objective of this study was to evaluate the chemical exchange saturation transfer (CEST) effect of amino acids and neurotransmitters, which exist in the human brain, depending on the concentration, pH, and amplitude of the saturation radiofrequency field. Phantoms were developed with asparagine (Asn), ${\gamma}-aminobutyric$ acid (GABA), glutamate (Glu), glycine (Gly), and myoinositol (MI). Each chemical had three different concentrations of 10, 30, and 50 mM and three different pH values of 5.6, 6.2, and 7.4. Full Z-spectrum CEST images for each phantom were acquired with a continuous-wave radiofrequency (RF) saturation pulse with two different $B_1$ amplitudes of $2{\mu}T$ and $4{\mu}T$ using an animal 9.4T MRI system. A voxel-based CEST asymmetry was mapped to evaluate exchangeable protons based on amide (-NH), amine ($-NH_2$), and hydroxyl (-OH) groups for the five target molecules. For all target molecules, the CEST effect was increased with increasing concentration and B1 amplitude; however, the CEST effect with varying pH displayed a different trend depending on the characteristics of the molecule. On CEST asymmetric maps, Glu and MI were well visualized around 3.0 and 0.9 ppm, respectively, and were well separated macroscopically at a pH of 7.4. The exchange rates of Asn, Glu, BABA, and Gly usually decreased with increasing pH. The CEST effect was dependent on the concentration, acidity of the target molecules, and B1 amplitude of the saturation RF pulse. The CEST effect for Asn can be observed in a 9.4T MRI system. The results of this study are based on applying the CEST technique in patients with neurodegenerative diseases when proteins in the brain are increased with disease progression.

Influence of Intraventricular Taurine on the Cardiovascular System of the Rabbit (측뇌실내 Taurine이 가토의 혈압 및 심박에 미치는 영향)

  • Lim, Dong-Yoon;Choi, Dong-Joon;Kim, Bong-Han
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.27-40
    • /
    • 1992
  • The purpose of the present study is an attempt to investigate the effect of intraventricular taurine, which is a naturally occuring amino acid containing sulfur and has inhibitory action in brain, on heart rate and blood pressure in the urethane anesthetized rabbits and also to elucidate the mechanism of its cardiovascular actions. Taurine $(0.15{\sim}1.5\;mg)$ injected into the lateral ventricle of anesthetized normontensive rabbits produced a dose-related fall in arterial blood pressure and heart rate, which were marked and long-lasting along with considerable respiratory depression. However, the intravenous administration of taurine at the same dose with intraventricular injection did not induce any changes in blood pressure as well as heart rate. Depressor responses induced by taurine were inhibited significantly by pretreatment with chlorisondamine, clonidine, strychnine and bicuculline but not by atropine, vagotomy, propranolol and metoclopramide. Moreover, taurine did not affect the pressor responses of norepinephrine. Taurine-induced bradycardic effects were blocked clearly by pretreatment with chlorisondamine, propranolol, clonidine, strychnine and bicuculline, while they were not influenced by atropine, vagotomy and metoclopramide. These experimental results suggest that intraventricular taurine causes long-lasting hypotensive and bradycardic actions, and that these cardiovascular effects may be exerted through taurinergic (glycinergic) and GABAergic receptors which are associated with catecholaminergic neurons in brain.

  • PDF

Effect of γ-Aminobutyric Acid (GABA) Producing Bacteria on In vitro Rumen Fermentation, Biogenic Amine Production and Anti-oxidation Using Corn Meal as Substrate

  • Ku, Bum Seung;Mamuad, Lovelia L.;Kim, Seon-Ho;Jeong, Chang Dae;Soriano, Alvin P.;Lee, Ho-Il;Nam, Ki-Chang;Ha, Jong K.;Lee, Sang Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.6
    • /
    • pp.804-811
    • /
    • 2013
  • The effects and significance of ${\gamma}$-amino butyric acid (GABA) producing bacteria (GPB) on in vitro rumen fermentation and reduction of biogenic amines (histamine, methylamine, ethylamine, and tyramine) using corn meal as a substrate were determined. Ruminal samples collected from ruminally fistulated Holstein cows served as inoculum and corn was used as substrate at 2% dry matter (DM). Different inclusion rates of GPB and GABA were evaluated. After incubation, addition of GPB had no significant effect on in vitro fermentation pH and total gas production, but significantly increased the ammonia nitrogen ($NH_3$-N) concentration and reduced the total biogenic amines production (p<0.05). Furthermore, antioxidation activity was improved as indicated by the significantly higher concentration of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) among treated samples when compared to the control (p<0.05). Additionally, 0.2% GPB was established as the optimum inclusion level. Taken together, these results suggest the potential of utilizing GPB as feed additives to improve growth performance in ruminants by reducing biogenic amines and increasing anti-oxidation.

Developmental changes in GABAA tonic inhibition are compromised by multiple mechanisms in preadolescent dentate gyrus granule cells

  • Pandit, Sudip;Lee, Gyu Seung;Park, Jin Bong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.6
    • /
    • pp.695-702
    • /
    • 2017
  • The sustained tonic currents ($I_{tonic}$) generated by ${\gamma}$-aminobutyric acid A receptors ($GABA_{A}Rs$) are implicated in diverse age-dependent brain functions. While various mechanisms regulating $I_{tonic}$ in the hippocampus are known, their combined role in $I_{tonic}$ regulation is not well understood in different age groups. In this study, we demonstrated that a developmental increase in GABA transporter (GAT) expression, combined with gradual decrease in $GABA_AR{\alpha}_5$ subunit, resulted in various $I_{tonic}$ in the dentate gyrus granule cells (DGGCs) of preadolescent rats. Both GAT-1 and GAT-3 expression gradually increased at infantile ($P_{6-8}$ and $P_{13-15}$) and juvenile ($P_{20-22}$ and $P_{27-29}$) stages, with stabilization observed thereafter in adolescents ($P_{34-36}$) and young adults ($P_{41-43}$). $I_{tonic}$ facilitation of a selective GAT-1 blocker (NO-711) was significantly less at $P_{6-8}$ than after $P_{13-15}$. The facilitation of $I_{tonic}$ by SNAP-5114, a GAT-3 inhibitor, was negligible in the absence of exogenous GABA at all tested ages. In contrast, $I_{tonic}$ in the presence of a nonselective GAT blocker (nipecotic acid, NPA) gradually decreased with age during the preadolescent period, which was mimicked by $I_{tonic}$ changes in the presence of exogenous GABA. $I_{tonic}$ sensitivity to L-655,708, a $GABA_AR{\alpha}_5$ subunit inverse agonist, gradually decreased during the preadolescent period in the presence of NPA or exogenous GABA. Finally, Western blot analysis showed that the expression of the $GABA_AR{\alpha}_5$ subunit in the dentate gyrus gradually decreased with age. Collectively, our results suggested that the $I_{tonic}$ regulation of altered GATs is under the final tune of $GABA_AR{\alpha}_5$ subunit activation in DGGCs at different ages.

Bioequivalence Test of Gabapentin 400 mg Capsules (가바펜틴 400밀리그람 캡슐의 생물학적동등성시험)

  • Kim, Se-Mi;Kang, Hyun-Ah;Cho, Hea-Young;Shin, Sae-Byeok;Yoo, Hee-Doo;Yoon, Hwa;Lee, Yong-Bok
    • YAKHAK HOEJI
    • /
    • v.52 no.3
    • /
    • pp.195-200
    • /
    • 2008
  • Gabapentin, [1-(aminomethyl) cyclohexaneacetic acid], a structural analog of $\gamma$-aminobutyric acid (GABA), is being developed for the treatment of epilepsy. Unlike GABA, gabapentin crosses the blood-brain barrier after systemic administration. Gabapentin is an effective antiepileptic drug in patients with partial and secondarily generalized seizures who are uncontrolled with use of existing anticonvulsant drug therapy. The purpose of the present study was to evaluate the bioequivalence of two gabapentin 400 mg capsules, $Neurontin^{(R)}$ capsule 400 mg (Pfizer Inc.) and Gabatin capsule 400 mg (Korean Drug Co. Ltd), according to the guidelines of the Korea Food and Drug Administration (KFDA). The release of gabapentin from the two gabapentin formulations in vitro was tested using KP VIII Apparatus II method with various dissolution media (pH 1.2, 4.0, 6.8 buffer solution and water). Twenty six healthy male subjects, 23.58$\pm$1.50 years in age and 66.74$\pm$8.31 kg in body weight, were divided into two groups and a randomized 2$\times$2 cross-over study was employed. After one capsule containing 400 mg as gabapentin were orally administered, blood was taken at predetermined time intervals and the concentrations of gabapentin in serum were determined using HPLC with fluorescence detector. The dissolution profiles of two formulations were similar at all dissolution media. In addition, the pharmacokinetic parameters such as $AUC_t$, $C_{max}$ and $T_{max}$ were calculated and ANOVA test was utilized for the statistical analysis of the parameters using logarithmically transformed $AUC_t$, $C_{max}$ and untransformed $T_{max}$. The results showed that the differences between two formulations based on the reference drug, $Neurontin^{(R)}$ capsule 400 mg, were 2.04, -3.68 and 16.79% for $AUC_t$, $C_{max}$ and $T_{max}$, respectively. There were no sequence effects between two formulations in these parameters. The 90% confidence intervals using logarithmically transformed data were within the acceptance range of log 0.8 to log 1.25 (e.g., log 0.91$\sim$log 1.16 and log 0.87$\sim$log 1.11 for $AUC_t$ and $C_{max}$, respectively). Thus, the criteria of the KFDA bioequivalence guideline were satisfied, indicating Gabatin capsule 400 mg was bioequivalent to $Neurontin^{(R)}$ capsule 400 mg.

Effect of an Ethanol Extract of Cassia obtusifolia Seeds on Alcohol-induced Memory Impairment (결명자 에탄올 추출물이 알코올로 유도로 유도한 기억 장애에 미치는 영향)

  • Kwon, Huiyoung;Cho, Eunbi;Jeon, Jieun;Lee, Young Choon;Kim, Dong Hyun
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.564-569
    • /
    • 2019
  • Heavy drinking disrupts the nervous system by activation of GABA receptors and inhibition of glutamate receptors, thereby preventing short-term memory formation. Degradation of cognition by alcohol induces blackouts, and it can lead to alcoholic dementia if repeated. Therefore, drugs need to be developed to prevent alcohol-induced blackout. In this study, we confirmed the effect of an ethanol extract of Cassia obtusifolia seeds (COE) on alcohol-induced memory impairment. The effects of COE and ethanol on cognitive functions mice were examined using the passive avoidance and Y-maze tests. The manner in which alcohol affects long-term potentiation (LTP) in relation to the learning and memory was confirmed by electrophysiology performed on mouse hippocampal slices. We also measured N-methyl-D-aspartate (NMDA) receptor-mediated field excitatory synapses (fEPSPs), which have a known association with cognitive impairment caused by ethanol. Ethanol caused memory impairments in passive avoidance and Y-maze tests. COE prevented these ethanol-induced memory impairments in these tests. Ethanol also blocked LTP induction in the mouse hippocampus, and COE prevented this ethanol-induced LTP deficit. Ethanol decreased NMDA receptor-mediated fEPSPs in the mouse hippocampus, and this decrease was prevented by COE. These results suggest that COE might be useful in preventing alcohol-induced neurological dysfunctions, including blackouts.

Integrative Analysis of Probiotic-Mediated Remodeling in Canine Gut Microbiota and Metabolites Using a Fermenter for an Intestinal Microbiota Model

  • Anna Kang;Min-Jin Kwak;Hye Jin Choi;Seon-hui Son;Sei-hyun Lim;Ju Young Eor;Minho Song;Min Kyu Kim;Jong Nam Kim;Jungwoo Yang;Minjee Lee;Minkyoung Kang;Sangnam Oh;Younghoon Kim
    • Food Science of Animal Resources
    • /
    • v.44 no.5
    • /
    • pp.1080-1095
    • /
    • 2024
  • In contemporary society, the increasing number of pet-owning households has significantly heightened interest in companion animal health, expanding the probiotics market aimed at enhancing pet well-being. Consequently, research into the gut microbiota of companion animals has gained momentum, however, ethical and societal challenges associated with experiments on intelligent and pain-sensitive animals necessitate alternative research methodologies to reduce reliance on live animal testing. To address this need, the Fermenter for Intestinal Microbiota Model (FIMM) is being investigated as an in vitro tool designed to replicate gastrointestinal conditions of living animals, offering a means to study gut microbiota while minimizing animal experimentation. The FIMM system explored interactions between intestinal microbiota and probiotics within a simulated gut environment. Two strains of commercial probiotic bacteria, Enterococcus faecium IDCC 2102 and Bifidobacterium lactis IDCC 4301, along with a newly isolated strain from domestic dogs, Lactobacillus acidophilus SLAM AK001, were introduced into the FIMM system with gut microbiota from a beagle model. Findings highlight the system's capacity to mirror and modulate the gut environment, evidenced by an increase in beneficial bacteria like Lactobacillus and Faecalibacterium and a decrease in the pathogen Clostridium. The study also verified the system's ability to facilitate accurate interactions between probiotics and commensal bacteria, demonstrated by the production of short-chain fatty acids and bacterial metabolites, including amino acids and gamma-aminobutyric acid precursors. Thus, the results advocate for FIMM as an in vitro system that authentically simulates the intestinal environment, presenting a viable alternative for examining gut microbiota and metabolites in companion animals.